ﻻ يوجد ملخص باللغة العربية
We study the effects of power-law long-range couplings on measurement-induced phases and transitions in tractable large-$N$ models, including a Brownian qubit model and a Brownian SYK model. In one dimension, the long-range coupling is irrelevant for $alpha>3/2$, with $alpha$ being the power-law exponent, thus the volume-law and area-law entanglement phases and the phase transition remain intact. For $alpha<3/2$ the long-range coupling becomes relevant, leading to a nontrivial dynamical exponent at the measurement-induced phase transition. More interestingly, for $alpha<1$ the entanglement pattern receives a sub-volume correction for both area-law and volume-law phases. The volume-law phase with such a sub-volume correction realizes a novel quantum error correcting code whose code distance scales as $L^{2-2alpha}$. We further extend the calculation to a quadratic SYK model, where two distinct fractal entangled phases emerge, leading to a complete phase diagram of the long-range free fermion model under monitoring.
The competition between scrambling unitary evolution and projective measurements leads to a phase transition in the dynamics of quantum entanglement. Here, we demonstrate that the nature of this transition is fundamentally altered by the presence of
Competition between unitary dynamics that scrambles quantum information non-locally and local measurements that probe and collapse the quantum state can result in a measurement-induced entanglement phase transition. Here we study this phenomenon in a
Entanglement transitions in quantum dynamics present a novel class of phase transitions in non-equilibrium systems. When a many-body quantum system undergoes unitary evolution interspersed with monitored random measurements, the steady-state can exhi
Whether long-range interactions allow for a form of causality in non-relativistic quantum models remains an open question with far-reaching implications for the propagation of information and thermalization processes. Here, we study the out-of-equili
We prove the existence of non-equilibrium phases of matter in the prethermal regime of periodically-driven, long-range interacting systems, with power-law exponent $alpha > d$, where $d$ is the dimensionality of the system. In this context, we predic