ﻻ يوجد ملخص باللغة العربية
We investigate the hopping dynamics of a colloidal particle across a potential barrier and within a viscoelastic, i.e., non-Markovian bath, and report two clearly separated time scales in the corresponding waiting time distributions. While the longer time scale exponentially depends on the barrier height, the shorter one is similar to the relaxation time of the fluid. This short time scale is a signature of the storage and release of elastic energy inside the bath, that strongly increases the hopping rate. Our results are in excellent agreement with numerical simulations of a simple Maxwell model.
We numerically study the escape kinetics of a self-propelled Janus particle, carrying a cargo, from a meta-stable state. We assume that the cargo is attached to the Janus particle by a flexible harmonic spring. We take into account the effect of velo
The locomotion of microorganisms and spermatozoa in complex viscoelastic fluids is of critical importance in many biological processes such as fertilization, infection, and biofilm formation. Depending on their propulsion mechanisms, microswimmers di
We study a granular gas of viscoelastic particles (kinetic energy loss upon collision is a function of the particles relative velocities at impact) subject to a stochastic thermostat. We show that the system displays anomalous cooling and heating rat
A model system inspired by recent experiments on the dynamics of a folded protein under the influence of a sinusoidal force is investigated and found to replicate many of the response characteristics of such a system. The essence of the model is a st
We perform micro-rheological experiments with a colloidal bead driven through a viscoelastic worm-like micellar fluid and observe two distinctive shear thinning regimes, each of them displaying a Newtonian-like plateau. The shear thinning behavior at