ﻻ يوجد ملخص باللغة العربية
Far from being a passive information store, the genome is a mechanically dynamic and diverse system in which torsion and tension fluctuate and combine to determine structure and help regulate gene expression. Much of this mechanical perturbation is due to molecular machines such as topoisomerases which must stretch and twist DNA as part of various functions including DNA repair and replication. While the broad-scale mechanical response of nucleic acids to tension and torsion is well characterized, detail at the single base pair level is beyond the limits of even super-resolution imaging. Here, we present a straightforward, flexible, and extensible umbrella-sampling protocol to twist and stretch nucleic acids in silico using the popular biomolecular simulation package Amber -- though the principles we describe are applicable also to other packages such as GROMACS. We discuss how to set up the simulation system, decide forcefields and solvation models, and equilibrate. We then introduce the torsionally-constrained stretching protocol, and finally we present some analysis techniques we have used to characterize structural motif formation. Rather than define forces or fictional pseudoatoms, we instead define a fixed translation of specified atoms between each umbrella sampling step, which allows comparison with experiment without needing to estimate applied forces by simply using the fractional end-to-end displacement as a comparison metric. We hope that this easy to implement solution will be valuable for interrogating optical and magnetic tweezers data on nucleic acids at base pair resolution.
Loops are essential secondary structure elements in folded DNA and RNA molecules and proliferate close to the melting transition. Using a theory for nucleic acid secondary structures that accounts for the logarithmic entropy c ln m for a loop of leng
EXSY, TOCSY and NOESY lie at the foundation of homonuclear NMR experiments in organic and pharmaceutical chemistry, as well as in structural biology. Limited magnetization transfer efficiency is an intrinsic downside of these methods, particularly wh
In several previous works, I presented the mirror symmetry in the set of protein amino acids, expressed through the number of atoms. Here, however, the same thing is shown but over the number of nucleons and molecules mass. Compared to the previous v
Helicases are molecular motors that unwind double-stranded nucleic acids (dsNA), such as DNA and RNA). Typically a helicase translocates along one of the NA single strands while unwinding and uses adenosine triphosphate (ATP) hydrolysis as an energy
Optimal hematocrit $H_o$ maximizes oxygen transport. In healthy humans, the average hematocrit $H$ is in the range of 40-45$%$, but it can significantly change in blood pathologies such as severe anemia (low $H$) and polycythemia (high $H$). Whether