ﻻ يوجد ملخص باللغة العربية
Quantum state tomography (QST) is the procedure for reconstructing unknown quantum states from a series of measurements of different observables. Depending on the physical system, different sets of observables have been used for this procedure. In the case of spin-qubits, the most common procedure is to measure the transverse magnetization of the system as a function of time. Here, we present a different scheme that relies on time-independent observables and therefore does not require measurements at different evolution times, thereby greatly reducing the overall measurement time. To recover the full density matrix, we use a set of unitary operations that transform the density operator elements into the directly measurable observable. We demonstrate the performance of this scheme in the electron-nuclear spin system of the nitrogen vacancy center in diamond.
The diamond nitrogen-vacancy (NV) center is a leading platform for quantum information science due to its optical addressability and room-temperature spin coherence. However, measurements of the NV centers spin state typically require averaging over
Applications of negatively charged nitrogen-vacancy center in diamond exploit the centers unique optical and spin properties, which at ambient temperature, are predominately governed by electron-phonon interactions. Here, we investigate these interac
We theoretically propose a method to realize optical nonreciprocity in rotating nano-diamond with a nitrogen-vacancy (NV) center. Because of the relative motion of the NV center with respect to the propagating fields, the frequencies of the fields ar
We study the resonant optical transitions of a single nitrogen-vacancy (NV) center that is coherently dressed by a strong mechanical drive. Using a gigahertz-frequency diamond mechanical resonator that is strain-coupled to an NV centers orbital state
Optical and microwave double resonance techniques are used to obtain the excited state structure of single nitrogen-vacancy centers in diamond. The excited state is an orbital doublet and it is shown that it can be split and associated transition str