ﻻ يوجد ملخص باللغة العربية
We make ab initio predictions for the A = 6 nuclear level scheme based on two- and three-nucleon interactions up to next-to-next-to-leading order in chiral effective field theory ($chi$EFT). We utilize eigenvector continuation and Bayesian methods to quantify uncertainties stemming from the many-body method, the $chi$EFT truncation, and the low-energy constants of the nuclear interaction. The construction and validation of emulators is made possible via the development of JupiterNCSM -- a new M-scheme no-core shell model code that uses on-the-fly Hamiltonian matrix construction for efficient, single-node computations up to $N_mathrm{max} = 10$ for ${}^{6}mathrm{Li}$. We find a slight underbinding of ${}^{6}mathrm{He}$ and ${}^{6}mathrm{Li}$, although consistent with experimental data given our theoretical error bars. As a result of incorporating a correlated $chi$EFT-truncation errors we find more precise predictions (smaller error bars) for separation energies: $S_d({}^{6}mathrm{Li}) = 0.89 pm 0.44$ MeV, $S_{2n}({}^{6}mathrm{He}) = 0.20 pm 0.60$ MeV, and for the beta decay Q-value: $Q_{beta^-}({}^{6}mathrm{He}) = 3.71 pm 0.65$ MeV. We conclude that our error bars can potentially be reduced further by extending the model space used by JupiterNCSM.
We describe the Bayesian Analysis of Nuclear Dynamics (BAND) framework, a cyberinfrastructure that we are developing which will unify the treatment of nuclear models, experimental data, and associated uncertainties. We overview the statistical princi
Bayesian inference applied to microseismic activity monitoring allows for principled estimation of the coordinates of microseismic events from recorded seismograms, and their associated uncertainties. However, forward modelling of these microseismic
In this proceeding, the deep Convolutional Neural Networks (CNNs) are deployed to recognize the order of QCD phase transition and predict the dynamical parameters in Langevin processes. To overcome the intrinsic randomness existed in a stochastic pro
Hamiltonian Monte Carlo (HMC) is an efficient Bayesian sampling method that can make distant proposals in the parameter space by simulating a Hamiltonian dynamical system. Despite its popularity in machine learning and data science, HMC is inefficien
Pulse shape discriminating scintillator materials in many cases allow the user to identify two basic kinds of pulses arising from two kinds of particles: neutrons and gammas. An uncomplicated solution for building a classifier consists of a two-compo