The non-Markov processes widely exist in thermodymanic processes, while it usually requires packing of many transistors and memories with great system complexity in traditional device architecture to minic such functions. Two-dimensional (2D) material-based resistive random access memory (RRAM) devices show potential for next-generation computing systems with much-reduced complexity. Here, we achieve the non-Markov chain in an individual RRAM device based on 2D mica with a vertical metal/mica/metal structure. We find that the internal potassium ions (K+) in 2D mica gradually move along the direction of the applied electric field, making the initially insulating mica conductive. The accumulation of K+ is tuned by electrical field, and the 2D-mica RRAM possesses both unipolar and bipolar memory windows, high on/off ratio, decent stability and repeatability.Importantly, the non-Markov chain algorithm is established for the first time in a single RRAM, in which the movement of K+ is dependent on the stimulated voltage as well as their past states. This work not only uncovers the inner ionic conductivity of 2D mica, but also opens the door for such novel RRAM devices with numerous functions and applications.