ﻻ يوجد ملخص باللغة العربية
Completion through the embedding representation of the knowledge graph (KGE) has been a research hotspot in recent years. Realistic knowledge graphs are mostly related to time, while most of the existing KGE algorithms ignore the time information. A few existing methods directly or indirectly encode the time information, ignoring the balance of timestamp distribution, which greatly limits the performance of temporal knowledge graph completion (KGC). In this paper, a temporal KGC method is proposed based on the direct encoding time information framework, and a given time slice is treated as the finest granularity for balanced timestamp distribution. A large number of experiments on temporal knowledge graph datasets extracted from the real world demonstrate the effectiveness of our method.
Knowledge graphs have been demonstrated to be an effective tool for numerous intelligent applications. However, a large amount of valuable knowledge still exists implicitly in the knowledge graphs. To enrich the existing knowledge graphs, recent year
Reasoning in a temporal knowledge graph (TKG) is a critical task for information retrieval and semantic search. It is particularly challenging when the TKG is updated frequently. The model has to adapt to changes in the TKG for efficient training and
Knowledge Graph (KG) reasoning that predicts missing facts for incomplete KGs has been widely explored. However, reasoning over Temporal KG (TKG) that predicts facts in the future is still far from resolved. The key to predict future facts is to thor
Background Knowledge graphs (KGs), especially medical knowledge graphs, are often significantly incomplete, so it necessitating a demand for medical knowledge graph completion (MedKGC). MedKGC can find new facts based on the exited knowledge in the K
Inferring missing facts in temporal knowledge graphs (TKGs) is a fundamental and challenging task. Previous works have approached this problem by augmenting methods for static knowledge graphs to leverage time-dependent representations. However, thes