ﻻ يوجد ملخص باللغة العربية
We study the vision transformer structure in the mobile level in this paper, and find a dramatic performance drop. We analyze the reason behind this phenomenon, and propose a novel irregular patch embedding module and adaptive patch fusion module to improve the performance. We conjecture that the vision transformer blocks (which consist of multi-head attention and feed-forward network) are more suitable to handle high-level information than low-level features. The irregular patch embedding module extracts patches that contain rich high-level information with different receptive fields. The transformer blocks can obtain the most useful information from these irregular patches. Then the processed patches pass the adaptive patch merging module to get the final features for the classifier. With our proposed improvements, the traditional uniform vision transformer structure can achieve state-of-the-art results in mobile level. We improve the DeiT baseline by more than 9% under the mobile-level settings and surpass other transformer architectures like Swin and CoaT by a large margin.
Convolutional architectures have proven extremely successful for vision tasks. Their hard inductive biases enable sample-efficient learning, but come at the cost of a potentially lower performance ceiling. Vision Transformers (ViTs) rely on more flex
We present Multiscale Vision Transformers (MViT) for video and image recognition, by connecting the seminal idea of multiscale feature hierarchies with transformer models. Multiscale Transformers have several channel-resolution scale stages. Starting
Attention-based neural networks such as the Vision Transformer (ViT) have recently attained state-of-the-art results on many computer vision benchmarks. Scale is a primary ingredient in attaining excellent results, therefore, understanding a models s
To better detect pedestrians of various scales, deep multi-scale methods usually detect pedestrians of different scales by different in-network layers. However, the semantic levels of features from different layers are usually inconsistent. In this p
We introduce dense vision transformers, an architecture that leverages vision transformers in place of convolutional networks as a backbone for dense prediction tasks. We assemble tokens from various stages of the vision transformer into image-like r