ﻻ يوجد ملخص باللغة العربية
We present the characteristics of DH type II bursts for the Solar Cycles 23 and 24. The bursts are classified according to their end frequencies into three categories, i.e. Low Frequency Group (LFG; 20 kHz $leq$ $f$ $leq$ 200 kHz), Medium Frequency Group (MFG; 200 kHz $<$ $f$ $leq$ 1 MHz), and High Frequency Group (HFG; 1 MHz $<$ $f$ $le$ 16 MHz). We find that the sources for LFG, MFG, and HFG events are homogeneously distributed over the active region belt. Our analysis shows a drastic reduction of the DH type II events during Solar Cycle 24 which includes only 35% of the total events (i.e. 179 out of 514). Despite having smaller number of DH type II events in the Solar Cycle 24, it contains a significantly higher fraction of LFG events compared to the previous cycle (32% $versus$ 24%). However, within the LFG group the cycle 23 exhibits significant dominance of type II bursts that extend below 50 kHz, suggesting rich population of powerful CMEs travelling beyond half of the Sun-Earth distance. The events of LFG group display strongest association with faster and wider (more than 82% events are halo) CMEs while at the source location they predominantly trigger large M/X class flares (in more than 83% cases). Our analysis also indicates that CME initial speed or flare energetics are partly related with the duration of type II burst and that survival of CME associated shock is determined by multiple factors/parameters related to CMEs, flares, and state of coronal and interplanetary medium. The profiles relating CME heights with respect to the end frequencies of DH type II bursts suggest that for HFG and MFG categories, the location for majority of CMEs ($approx$65%-70%) is in well compliance with ten-fold Leblanc coronal density model, while for LFG events a lower value of density multiplier ($approx$3) seems to be compatible.
We study the clustering properties of fast Coronal Mass Ejections (CMEs) that occurred during solar cycles 23 and 24. We apply two methods: the Max spectrum method can detect the predominant clusters and the de-clustering threshold time method provid
We report on a comparison of the expansion speeds of limb coronal mass ejections (CMEs) between solar cycles 23 and 24. We selected a large number of limb CME events associated with soft X-ray flare size greater than or equal to M1.0 from both cycles
We report the temporal evolution of the excess brightness temperature above solar active regions (ARs) observed with the Solar Submillimeter Telescope (SST) at 212 ({lambda} = 1.4 mm) and 405 GHz ({lambda} = 0.7 mm) during Cycles 23 and 24. Compariso
We investigate the physical conditions of the sources of two metric Type-II bursts associated with CME expansions with the aim of verifying the relationship between the shocks and the CMEs, comparing the heights of the radio sources and the heights o
Rieger-type periodicity has been detected in different activity indices over many solar cycles. It was recently shown that the periodicity correlates with solar activity having a shorter period during stronger cycles. Solar activity level is generall