ترغب بنشر مسار تعليمي؟ اضغط هنا

Adversarial Stein Training for Graph Energy Models

293   0   0.0 ( 0 )
 نشر من قبل Shiv Shankar
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Shiv Shankar




اسأل ChatGPT حول البحث

Learning distributions over graph-structured data is a challenging task with many applications in biology and chemistry. In this work we use an energy-based model (EBM) based on multi-channel graph neural networks (GNN) to learn permutation invariant unnormalized density functions on graphs. Unlike standard EBM training methods our approach is to learn the model via minimizing adversarial stein discrepancy. Samples from the model can be obtained via Langevin dynamics based MCMC. We find that this approach achieves competitive results on graph generation compared to benchmark models.



قيم البحث

اقرأ أيضاً

We present a new method for evaluating and training unnormalized density models. Our approach only requires access to the gradient of the unnormalized models log-density. We estimate the Stein discrepancy between the data density $p(x)$ and the model density $q(x)$ defined by a vector function of the data. We parameterize this function with a neural network and fit its parameters to maximize the discrepancy. This yields a novel goodness-of-fit test which outperforms existing methods on high dimensional data. Furthermore, optimizing $q(x)$ to minimize this discrepancy produces a novel method for training unnormalized models which scales more gracefully than existing methods. The ability to both learn and compare models is a unique feature of the proposed method.
Adversarial training is an approach for increasing models resilience against adversarial perturbations. Such approaches have been demonstrated to result in models with feature representations that generalize better. However, limited works have been d one on adversarial training of models on graph data. In this paper, we raise such a question { does adversarial training improve the generalization of graph representations. We formulate L2 and
Graph neural network (GNN) explanations have largely been facilitated through post-hoc introspection. While this has been deemed successful, many post-hoc explanation methods have been shown to fail in capturing a models learned representation. Due t o this problem, it is worthwhile to consider how one might train a model so that it is more amenable to post-hoc analysis. Given the success of adversarial training in the computer vision domain to train models with more reliable representations, we propose a similar training paradigm for GNNs and analyze the respective impact on a models explanations. In instances without ground truth labels, we also determine how well an explanation method is utilizing a models learned representation through a new metric and demonstrate adversarial training can help better extract domain-relevant insights in chemistry.
Generative adversarial networks (GANs) learn the distribution of observed samples through a zero-sum game between two machine players, a generator and a discriminator. While GANs achieve great success in learning the complex distribution of image, so und, and text data, they perform suboptimally in learning multi-modal distribution-learning benchmarks including Gaussian mixture models (GMMs). In this paper, we propose Generative Adversarial Training for Gaussian Mixture Models (GAT-GMM), a minimax GAN framework for learning GMMs. Motivated by optimal transport theory, we design the zero-sum game in GAT-GMM using a random linear generator and a softmax-based quadratic discriminator architecture, which leads to a non-convex concave minimax optimization problem. We show that a Gradient Descent Ascent (GDA) method converges to an approximate stationary minimax point of the GAT-GMM optimization problem. In the benchmark case of a mixture of two symmetric, well-separated Gaussians, we further show this stationary point recovers the true parameters of the underlying GMM. We numerically support our theoretical findings by performing several experiments, which demonstrate that GAT-GMM can perform as well as the expectation-maximization algorithm in learning mixtures of two Gaussians.
Adversarial training, in which a network is trained on adversarial examples, is one of the few defenses against adversarial attacks that withstands strong attacks. Unfortunately, the high cost of generating strong adversarial examples makes standard adversarial training impractical on large-scale problems like ImageNet. We present an algorithm that eliminates the overhead cost of generating adversarial examples by recycling the gradient information computed when updating model parameters. Our free adversarial training algorithm achieves comparable robustness to PGD adversarial training on the CIFAR-10 and CIFAR-100 datasets at negligible additional cost compared to natural training, and can be 7 to 30 times faster than other strong adversarial training methods. Using a single workstation with 4 P100 GPUs and 2 days of runtime, we can train a robust model for the large-scale ImageNet classification task that maintains 40% accuracy against PGD attacks. The code is available at https://github.com/ashafahi/free_adv_train.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا