ترغب بنشر مسار تعليمي؟ اضغط هنا

Differentiability of the Value Function of Semilinear Parabolic Infinite Time Horizon Optimal Control Problems on $L^2(Omega)$ under Control Constraints

210   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

An abstract framework guaranteeing the local continuous differentiability of the value function associated with optimal stabilization problems subject to abstract semilinear parabolic equations subject to a norm constraint on the controls is established. It guarantees that the value function satisfies the associated Hamilton-Jacobi-Bellman equation in the classical sense. The applicability of the developed framework is demonstrated for specific semilinear parabolic equations.



قيم البحث

اقرأ أيضاً

A class of optimal control problems of hybrid nature governed by semilinear parabolic equations is considered. These problems involve the optimization of switching times at which the dynamics, the integral cost, and the bounds on the control may chan ge. First- and second-order optimality conditions are derived. The analysis is based on a reformulation involving a judiciously chosen transformation of the time domains. For autonomous systems and time-independent integral cost, we prove that the Hamiltonian is constant in time when evaluated along the optimal controls and trajectories. A numerical example is provided.
We use the continuation and bifurcation package pde2path to numerically analyze infinite time horizon optimal control problems for parabolic systems of PDEs. The basic idea is a two step approach to the canonical systems, derived from Pontryagins max imum principle. First we find branches of steady or time-periodic states of the canonical systems, i.e., canonical steady states (CSS) respectively canonical periodic states (CPS), and then use these results to compute time-dependent canonical paths connecting to a CSS or a CPS with the so called saddle point property. This is a (high dimensional) boundary value problem in time, which we solve by a continuation algorithm in the initial states. We first explain the algorithms and then the implementation via some example problems and associated pde2path demo directories. The first two examples deal with the optimal management of a distributed shallow lake, and of a vegetation system, both with (spatially, and temporally) distributed controls. These examples show interesting bifurcations of so called patterned CSS, including patterned optimal steady states. As a third example we discuss optimal boundary control of a fishing problem with boundary catch. For the case of CPS-targets we first focus on an ODE toy model to explain and validate the method, and then discuss an optimal pollution mitigation PDE model.
We study the regularity properties of the value function associated with an affine optimal control problem with quadratic cost plus a potential, for a fixed final time and initial point. Without assuming any condition on singular minimizers, we prove that the value function is continuous on an open and dense subset of the interior of the attainable set. As a byproduct we obtain that it is actually smooth on a possibly smaller set, still open and dense.
This paper is concerned with a stochastic linear-quadratic (LQ) optimal control problem on infinite time horizon, with regime switching, random coefficients, and cone control constraint. Two new extended stochastic Riccati equations (ESREs) on infini te time horizon are introduced. The existence of the nonnegative solutions, in both standard and singular cases, is proved through a sequence of ESREs on finite time horizon. Based on this result and some approximation techniques, we obtain the optimal state feedback control and optimal value for the stochastic LQ problem explicitly, which also implies the uniqueness of solutions for the ESREs. Finally, we apply these results to solve a lifetime portfolio selection problem of tracking a given wealth level with regime switching and portfolio constraint.
A class of infinite horizon optimal control problems involving mixed quasi-norms of $L^p$-type cost functionals for the controls is discussed. These functionals enhance sparsity and switching properties of the optimal controls. The existence of optim al controls and their structural properties are analyzed on the basis of first order optimality conditions. A dynamic programming approach is used for numerical realization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا