ﻻ يوجد ملخص باللغة العربية
Autonomous Driving and Simultaneous Localization and Mapping(SLAM) are becoming increasingly important in real world, where point cloud-based large scale place recognition is the spike of them. Previous place recognition methods have achieved acceptable performances by regarding the task as a point cloud retrieval problem. However, all of them are suffered from a common defect: they cant handle the situation when the point clouds are rotated, which is common, e.g, when viewpoints or motorcycle types are changed. To tackle this issue, we propose an Attentive Rotation Invariant Convolution (ARIConv) in this paper. The ARIConv adopts three kind of Rotation Invariant Features (RIFs): Spherical Signals (SS), Individual-Local Rotation Invariant Features (ILRIF) and Group-Local Rotation Invariant features (GLRIF) in its structure to learn rotation invariant convolutional kernels, which are robust for learning rotation invariant point cloud features. Whats more, to highlight pivotal RIFs, we inject an attentive module in ARIConv to give different RIFs different importance when learning kernels. Finally, utilizing ARIConv, we build a DenseNet-like network architecture to learn rotation-insensitive global descriptors used for retrieving. We experimentally demonstrate that our model can achieve state-of-the-art performance on large scale place recognition task when the point cloud scans are rotated and can achieve comparable results with most of existing methods on the original non-rotated datasets.
Unlike its image based counterpart, point cloud based retrieval for place recognition has remained as an unexplored and unsolved problem. This is largely due to the difficulty in extracting local feature descriptors from a point cloud that can subseq
In the field of large-scale SLAM for autonomous driving and mobile robotics, 3D point cloud based place recognition has aroused significant research interest due to its robustness to changing environments with drastic daytime and weather variance. Ho
We propose a local-to-global representation learning algorithm for 3D point cloud data, which is appropriate to handle various geometric transformations, especially rotation, without explicit data augmentation with respect to the transformations. Our
Sign language is a gesture based symbolic communication medium among speech and hearing impaired people. It also serves as a communication bridge between non-impaired population and impaired population. Unfortunately, in most situations a non-impaire
Many recent works show that a spatial manipulation module could boost the performances of deep neural networks (DNNs) for 3D point cloud analysis. In this paper, we aim to provide an insight into spatial manipulation modules. Firstly, we find that th