ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic Optimal Operation of the VSC-MTDC System with FACTS Devices to Integrate Wind Power

139   0   0.0 ( 0 )
 نشر من قبل Zhao Yuan
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposes to use stochastic conic programming to address the challenge of large-scale wind power integration to the power system. Multiple wind farms are connected through the voltage source converter (VSC) based multi-terminal DC (VSC-MTDC) system to the power network supported by the Flexible AC Transmission System (FACTS). The optimal operation of the power network incorporating the VSC-MTDC system and FACTS devices is formulated in a stochastic conic programming framework accounting the uncertainties of the wind power generation. A methodology to generate representative scenarios of power generations from the wind farms is proposed using wind speed measurements and wind turbine models. The nonconvex transmission network constraints including the VSC-MTDC system and FACTS devices are convexified through the proposed second-order cone AC optimal power flow model (SOC-ACOPF) that can be solved to the global optimality using interior point method. In order to tackle the computational challenge due to the large number of wind power scenarios, a modified Benders decomposition algorithm (M-BDA) accelerated by parallel computation is proposed. The energy dispatch of conventional power generators is formulated as the master problem of M-BDA. Numerical results for up to 50000 wind power scenarios show that the proposed M-BDA approach to solve stochastic SOC-ACOPF outperforms the traditional single-stage (without decomposition) solution approach in both convergence capability and computational efficiency. The feasibility performance of the proposed stochastic SOC-ACOPF model is also demonstrated.



قيم البحث

اقرأ أيضاً

The integration of renewables into electrical grids calls for optimization-based control schemes requiring reliable grid models. Classically, parameter estimation and optimization-based control is often decoupled, which leads to high system operation cost in the estimation procedure. The present work proposes a method for simultaneously minimizing grid operation cost and optimally estimating line parameters based on methods for the optimal design of experiments. This method leads to a substantial reduction in cost for optimal estimation and in higher accuracy in the parameters compared with standard Optimal Power Flow and maximum-likelihood estimation. We illustrate the performance of the proposed method on a benchmark system.
We explore optimization methods for planning the placement, sizing and operations of Flexible Alternating Current Transmission System (FACTS) devices installed into the grid to relieve congestion created by load growth or fluctuations of intermittent renewable generation. We limit our selection of FACTS devices to those that can be represented by modification of the inductance of the transmission lines. Our master optimization problem minimizes the $l_1$ norm of the FACTS-associated inductance correction subject to constraints enforcing that no line of the system exceeds its thermal limit. We develop off-line heuristics that reduce this non-convex optimization to a succession of Linear Programs (LP) where at each step the constraints are linearized analytically around the current operating point. The algorithm is accelerated further with a version of the cutting plane method greatly reducing the number of active constraints during the optimization, while checking feasibility of the non-active constraints post-factum. This hybrid algorithm solves a typical single-contingency problem over the MathPower Polish Grid model (3299 lines and 2746 nodes) in 40 seconds per iteration on a standard laptop---a speed up that allows the sizing and placement of a family of FACTS devices to correct a large set of anticipated contingencies. From testing of multiple examples, we observe that our algorithm finds feasible solutions that are always sparse, i.e., FACTS devices are placed on only a few lines. The optimal FACTS are not always placed on the originally congested lines, however typically the correction(s) is made at line(s) positioned in a relative proximity of the overload line(s).
201 - Jin Zhao , Fangxing Li , Xi Chen 2021
This paper proposes a new deep learning (DL) based model-free robust method for bulk system on-line load restoration with high penetration of wind power. Inspired by the iterative calculation of the two-stage robust load restoration model, the deep n eural network (DNN) and deep convolutional neural network (CNN) are respectively designed to find the worst-case system condition of a load pickup decision and evaluate the corresponding security. In order to find the optimal result within a limited number of checks, a load pickup checklist generation (LPCG) algorithm is developed to ensure the optimality. Then, the fast robust load restoration strategy acquisition is achieved based on the designed one-line strategy generation (OSG) algorithm. The proposed method finds the optimal result in a model-free way, holds the robustness to handle uncertainties, and provides real-time computation. It can completely replace conventional robust optimization and supports on-line robust load restoration which better satisfies the changeable restoration process. The effectiveness of the proposed method is validated using the IEEE 30-bus system and the IEEE 118-bus system, showing high computational efficiency and considerable accuracy.
Modern power grids are dependent on communication systems for data collection, visualization, and control. Distributed Network Protocol 3 (DNP3) is commonly used in supervisory control and data acquisition (SCADA) systems in power systems to allow co ntrol system software and hardware to communicate. To study the dependencies between communication network security, power system data collection, and industrial hardware, it is important to enable communication capabilities with real-time power system simulation. In this paper, we present the integration of new functionality of a power systems dynamic simulation package into our cyber-physical power system testbed that supports real-time power system data transfer using DNP3, demonstrated with an industrial real-time automation controller (RTAC). The usage and configuration of DNP3 with real-world equipment in to achieve power system monitoring and control of a large-scale synthetic electric grid via this DNP3 communication is presented. Then, an exemplar of DNP3 data collection and control is achieved in software and hardware using the 2000-bus Texas synthetic grid.
In this paper, we propose a data-driven energy storage system (ESS)-based method to enhance the online small-signal stability monitoring of power networks with high penetration of intermittent wind power. To accurately estimate inter-area modes that are closely related to the systems inherent stability characteristics, a novel algorithm that leverages on recent advances in wide-area measurement systems (WAMSs) and ESS technologies is developed. It is shown that the proposed approach can smooth the wind power fluctuations in near real-time using a small additional ESS capacity and thus significantly enhance the monitoring of small-signal stability. Dynamic Monte Carlo simulations on the IEEE 68-bus system are used to illustrate the effectiveness of the proposed algorithm in smoothing wind power and estimating the inter-area mode statistical properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا