ﻻ يوجد ملخص باللغة العربية
To rapidly obtain high resolution T2, T2* and quantitative susceptibility mapping (QSM) source separation maps with whole-brain coverage and high geometric fidelity. We propose Blip Up-Down Acquisition for Spin And Gradient Echo imaging (BUDA-SAGE), an efficient echo-planar imaging (EPI) sequence for quantitative mapping. The acquisition includes multiple T2*-, T2- and T2-weighted contrasts. We alternate the phase-encoding polarities across the interleaved shots in this multi-shot navigator-free acquisition. A field map estimated from interim reconstructions was incorporated into the joint multi-shot EPI reconstruction with a structured low rank constraint to eliminate geometric distortion. A self-supervised MR-Self2Self (MR-S2S) neural network (NN) was utilized to perform denoising after BUDA reconstruction to boost SNR. Employing Slider encoding allowed us to reach 1 mm isotropic resolution by performing super-resolution reconstruction on BUDA-SAGE volumes acquired with 2 mm slice thickness. Quantitative T2 and T2* maps were obtained using Bloch dictionary matching on the reconstructed echoes. QSM was estimated using nonlinear dipole inversion (NDI) on the gradient echoes. Starting from the estimated R2 and R2* maps, R2 information was derived and used in source separation QSM reconstruction, which provided additional para- and dia-magnetic susceptibility maps. In vivo results demonstrate the ability of BUDA-SAGE to provide whole-brain, distortion-free, high-resolution multi-contrast images and quantitative T2 and T2* maps, as well as yielding para- and dia-magnetic susceptibility maps. Derived quantitative maps showed comparable values to conventional mapping methods in phantom and in vivo measurements. BUDA-SAGE acquisition with self-supervised denoising and Slider encoding enabled rapid, distortion-free, whole-brain T2, T2* mapping at 1 mm3 isotropic resolution in 90 seconds.
Purpose: To rapidly obtain high isotropic-resolution T2 maps with whole-brain coverage and high geometric fidelity. Methods: A T2 blip-up/down echo planar imaging (EPI) acquisition with generalized Slice-dithered enhanced resolution (T2-BUDA-gSlide
Relaxometry studies in preterm and at-term newborns have provided insight into brain microstructure, thus opening new avenues for studying normal brain development and supporting diagnosis in equivocal neurological situations. However, such quantitat
Purpose: To develop a method that adaptively generates tiny dictionaries for joint T1-T2 mapping. Theory: This work breaks the bond between dictionary size and representation accuracy (i) by approximating the Bloch-response manifold by piece-wise l
This study presents a comparison of quantitative MRI methods based on an efficiency metric that quantifies their intrinsic ability to extract information about tissue parameters. Under a regime of unbiased parameter estimates, an intrinsic efficiency
Purpose: To demonstrate an ultrashort echo time magnetic resonance fingerprinting (UTE-MRF) method that can simultaneously quantify tissue relaxometries for muscle and bone in musculoskeletal systems and tissue components in brain and therefore can s