ﻻ يوجد ملخص باللغة العربية
We report the discovery of a massive protostar M17 MIR embedded in a hot molecular core in M17. The multi-wavelength data of M17 MIR during 1993 to 2019 show significant mid-IR (MIR) variations, which can be split into three stages, the decreasing phase during 1993.03 to mid 2004, the quiescent phase during mid 2004 to mid 2010, and the re-brightening phase since mid 2010 untill now. The H2O maser emission variation toward M17 MIR, together with the MIR variation, indicate an enhanced disk accretion rate onto M17 MIR during the decreasing and re-brightening phase. According to the kinematics of H2O maser spots, accretion rate ~7x10^-4 Msun/yr is estimated in the initial stage of the re-brightening phase, and a higher rate ~2x10^-3 Msun/yr is obtained in later stage, given by the MIR flux increased by a factor of 3. Radiative transfer modeling of SEDs of M17~MIR in the 2005 (quiescent) and 2017 epoch (accretion outburst) constrains the basic stellar parameters of M17 MIR, which is an intermediate-mass protostar (M~5.4 Msun) with lower accretion rate ~1.1x10^-5 Msun in quiescent and two orders of magnitude higher rate ~1.7x10^-3 Msun/yr in outburst. The enhanced accretion rate during outburst induces the luminosity outburst $Delta Lapprox7600 $Lsun, and a larger stellar radius is required to produce accretion rate consistent with observations. The decreasing and re-brightening phase reflect two accretion bursts ($Delta tsim 9-20$ yr) with burst magnitudes of 2 mag, separated by a quiescent phase lasting $sim6$ yr. The fraction time in accretion ourbusrt is about 83% over 26 yr. M17 MIR is the youngest one among the six confirmed sources with accretion burst. The extreme youth of M17 MIR suggests that minor accretion bursts are frequent at the earliest stages of massive star formation.
Using the HPC ressources of the state of Baden-Wurttemberg, we modelled for the first time the luminous burst from a young massive star by accretion of material from its close environment. We found that the surroundings of young massive stars are sha
HH 175 is an isolated Herbig-Haro object seen towards the B35 cloud in the lambda Ori region. We use deep Subaru 8m interference filter images and Spitzer images to show that HH 175 is a terminal shock in a large collimated outflow from the nearby em
It is important to determine if massive stars form via disc accretion, like their low-mass counterparts. Theory and observation indicate that protostellar jets are a natural consequence of accretion discs and are likely to be crucial for removing ang
We present the first resolved observations of the 1.3mm polarized emission from the disk-like structure surrounding the high-mass protostar Cepheus A HW2. These CARMA data partially resolve the dust polarization, suggesting an uniform morphology of p
We used ALMA to observe the star-forming region GGD27 at 1.14 mm with an unprecedented angular resolution, 40 mas (56 au) and sensitivity (0.002 Msun). We detected a cluster of 25 continuum sources, most of which are likely tracing disks around Class