Parameterizing Qudit States


الملخص بالإنكليزية

Quantum systems with a finite number of states at all times have been a primary element of many physical models in nuclear and elementary particle physics, as well as in condensed matter physics. Today, however, due to a practical demand in the area of developing quantum technologies, a whole set of novel tasks for improving our understanding of the structure of finite-dimensional quantum systems has appeared. In the present article we will concentrate on one aspect of such studies related to the problem of explicit parameterization of state space of an $N$-level quantum system. More precisely, we will discuss the problem of a practical description of the unitary $SU(N)$-invariant counterpart of the $N$-level state space $mathfrak{P}_N$, i.e., the unitary orbit space $mathfrak{P}_N/SU(N)$. It will be demonstrated that the combination of well-known methods of the polynomial invariant theory and convex geometry provides useful parameterization for the elements of $mathfrak{P}_N/SU(N)$. To illustrate the general situation, a detailed description of $mathfrak{P}_N/SU(N)$ for low-level systems: qubit $(N=2),,$ qutrit $(N=3),,$ quatrit $(N=4),$ - will be given.

تحميل البحث