ﻻ يوجد ملخص باللغة العربية
In a search for short timescale astrophysical transients in time-domain data, radio-frequency interference (RFI) causes both large quantities of false positive candidates and a significant reduction in sensitivity if not correctly mitigated. Here we propose an algorithm that infers a time-variable frequency channel mask directly from short-duration ($sim$1 s) data blocks: the method consists of computing a spectral statistic that correlates well with the presence of RFI, and then finding high outliers among the resulting values. For the latter task, we propose an outlier detection algorithm called Inter-Quartile Range Mitigation (IQRM), that is both non-parametric and robust to the presence of a trend in sequential data. The method requires no training and can in principle adapt to any telescope and RFI environment; its efficiency is shown on data from both the MeerKAT and Lovell 76-m radio telescopes. IQRM is fast enough to be used in a streaming search and has been integrated into the MeerTRAP real-time transient search pipeline. Open-source Python and C++ implementations are provided.
We demonstrate a new technique for detecting radio transients based on interferometric closure quantities. The technique uses the bispectrum, the product of visibilities around a closed-loop of baselines of an interferometer. The bispectrum is calibr
Pulsar detection and timing experiments are applications where adaptive filters seem eminently suitable tools for radio-frequency-interference (RFI) mitigation. We describe a novel variant which works well in field trials of pulsar observations centr
Most periodicity search algorithms used in pulsar astronomy today are highly efficient and take advantage of multiple CPUs or GPUs. The bottlenecks are usually represented by the operations that require an informed choice from an expert eye. A typica
Searches for radio pulsars are becoming increasingly difficult because of a rise in impulsive man-made terrestrial radio-frequency interference. Here we present a new technique, zero-DM filtering, which can significantly reduce the effects of such si
The forthcoming Extremely Large Telescopes all require adaptive optics systems for their successful operation. The real-time control for these systems becomes computationally challenging, in part limited by the memory bandwidths required for wavefron