ﻻ يوجد ملخص باللغة العربية
Both NASAs Solar Dynamics Observatory (SDO) and the JAXA/NASA Hinode mission include spectropolarimetric instruments designed to measure the photospheric magnetic field. SDOs Helioseismic and Magnetic Imager (HMI) emphasizes full-disk high-cadence and good spatial resolution data acquisition while Hinodes Solar Optical Telescope Spectro-Polarimeter (SOT-SP) focuses on high spatial resolution and spectral sampling at the cost of a limited field of view and slower temporal cadence. This work introduces a deep-learning system named SynthIA (Synthetic Inversion Approximation), that can enhance both missions by capturing the best of each instruments characteristics. We use SynthIA to produce a new magnetogram data product, SynodeP (Synthetic Hinode Pipeline), that mimics magnetograms from the higher spectral resolution Hinode/SOT-SP pipeline, but is derived from full-disk, high-cadence, and lower spectral-resolution SDO/HMI Stokes observations. Results on held-out data show that SynodeP has good agreement with the Hinode/SOT-SP pipeline
The Helioseismic and Magnetic Imager (HMI) onboard NASAs Solar Dynamics Observatory (SDO) produces estimates of the photospheric magnetic field which are a critical input to many space weather modelling and forecasting systems. The magnetogram produc
This paper describes the main characteristics of the Virtual Observatory as a research infrastructure in Astronomy, and identifies those fields in which it can be of help for the community of spectral stellar libraries.
We develop and apply an enhanced regularization algorithm, used in RHESSI X-ray spectral analysis, to constrain the ill-posed inverse problem that is determining the DEM from solar observations. We demonstrate this computationally fast technique appl
The Virtual Observatory is a new technology of the astronomical research allowing the seamless processing and analysis of a heterogeneous data obtained from a number of distributed data archives. It may also provide astronomical community with powerf
The Europlanet-2020 programme, which ended on Aug 31st, 2019, included an activity called VESPA (Virtual European Solar and Planetary Access), which focused on adapting Virtual Observatory (VO) techniques to handle Planetary Science data. This paper