ترغب بنشر مسار تعليمي؟ اضغط هنا

Precision calibration of the Duffing oscillator with phase control

111   0   0.0 ( 0 )
 نشر من قبل Nadine Meyer
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Duffing oscillator is a nonlinear extension of the ubiquitous harmonic oscillator and as such plays an outstanding role in science and technology. Experimentally, the system parameters are determined by a measurement of its response to an external excitation. When changing the amplitude or frequency of the external excitation, a sudden jump in the response function reveals the nonlinear dynamics prominently. However, this bistability leaves part of the full response function unobserved, which limits the precise measurement of the system parameters. Here, we exploit the often unknown fact that the response of a Duffing oscillator with nonlinear damping is a unique function of its phase. By actively stabilizing the oscillators phase we map out the full response function. This phase control allows us to precisely determine the system parameters. Our results are particularly important for characterizing nanoscale resonators, where nonlinear effects are observed readily and which hold great promise for next generation of ultrasensitive force and mass measurements. We demonstrate our approach experimentally with an optically levitated particle in high vacuum.



قيم البحث

اقرأ أيضاً

We present an optical-electronic approach to generating microwave signals with high spectral purity. By circumventing shot noise and operating near fundamental thermal limits, we demonstrate 10 GHz signals with an absolute timing jitter for a single hybrid oscillator of 420 attoseconds (1Hz - 5 GHz).
107 - Gerard P. Conangla 2019
A system obeying the harmonic oscillator equation of motion can be used as a force or proper acceleration sensor. In this short review we derive analytical expressions for the sensitivity of such sensors in a range of different situations, considerin g noise of thermal and measurement origins and a formalism for dealing with oscillators whose natural frequency $omega_0$ jitters. A special case where the sensitivity can be improved beyond the standard expressions and some applications with examples are also discussed.
Superparamagnetic colloidal particles can be reversibly assembled into wheel-like structures called microwheels ($mu$wheels) which roll on surfaces due to friction and can be driven at user-controlled speeds and directions using rotating magnetic fie lds. Here, we describe the hardware and software to create and control the magnetic fields that assemble and direct wheel motion and the optics to visualize them. Motivated by portability, adaptability and low-cost, an extruded aluminum heat dissipating frame incorporating open optics and audio speaker coils outfitted with high magnetic permeability cores was constructed. Open-source software was developed to define the magnitude, frequency, and orientation of the magnetic field, allowing for real time joystick control of $mu$wheels through two-dimensional (2D) and three-dimensional (3D) fluidic environments. With this combination of hardware and software, $mu$wheels translate at speeds up to 50 $mu$m/s through sample sizes up to 5 cm x 5 cm x 5 cm using 0.75-2.5 mT magnetic fields with rotation frequencies of 5-40 Hz. Heat dissipation by aluminum coil clamps maintained sample temperatures within 3 C of ambient temperature, a range conducive for biological applications. With this design, $mu$wheels can be manipulated and imaged in 2D and 3D networks at length scales of micrometers to centimeters
We study microwave response of a Josephson parametric oscillator consisting of a superconducting transmission-line resonator with an embedded dc-SQUID. The dc-SQUID allows to control the magnitude of a Kerr nonlinearity over the ranges where it is sm aller or larger than the photon loss rate. Spectroscopy measurements reveal the change of the microwave response from a classical Duffing oscillator to a Kerr parametric oscillator in a single device. In the single-photon Kerr regime, we observe parametric oscillations with a well-defined phase of either $0$ or $pi$, whose probability can be controlled by an externally injected signal.
143 - I. Serban , M. I. Dykman , 2009
We investigate the relaxation of a superconducting qubit for the case when its detector, the Josephson bifurcation amplifier, remains latched in one of its two (meta)stable states of forced vibrations. The qubit relaxation rates are different in diff erent states. They can display strong dependence on the qubit frequency and resonant enhancement, which is due to quasienergy resonances. Coupling to the driven oscillator changes the effective temperature of the qubit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا