ﻻ يوجد ملخص باللغة العربية
In this paper, we discuss relativistic hydrodynamics for a massless Dirac fermion in $(2+1)$ dimensions, which has the parity anomaly -- a global t Hooft anomaly between $mathrm{U}(1)$ and parity symmetries. We investigate how hydrodynamics implements the party anomaly, particularly focusing on the transport phenomena at the boundary. Based on the parity anomaly matching and the second law of local thermodynamics, we find $mathrm{U}(1)$ and entropy currents localized at the boundary as well as the bulk anomalous current with vanishing divergence. These edge currents are similar to the $(1+1)$-dimensional chiral transports, but the coefficients are given by half of theirs. We also generalize our discussion to more general anomalies among multiple $mathrm{U}(1)$ symmetries and single $mathbb{Z}_2$ symmetry.
Chiral anomalies give rise to dissipationless transport phenomena such as the chiral magnetic and vortical effects. In these notes I review the theory from a quantum field theoretic, hydrodynamic and holographic perspective. A physical interpretation
We propose a novel supersymmetry-inspired scheme for achieving robust single mode lasing in arrays of coupled microcavities, based on factorizing a given array Hamiltonian into its supercharge partner array. Pumping a single sublattice of the partner
A derivation of the anomaly-induced transport phenomena---the chiral magnetic/vortical effect---is revisited based on the imaginary-time formalism of quantum field theory. Considering the simplest anomalous system composed of a single Weyl fermion, w
In (2+1)-dimensional QED with a Chern-Simons term, we show that spontaneous magnetization occurs in the context of finite density vacua, which are the lowest Landau levels fully or half occupied by fermions. Charge condensation is shown to appear so
Physical systems made of many interacting quantum particles can often be described by Euler hydrodynamic equations in the limit of long wavelengths and low frequencies. Recently such a classical hydrodynamic framework, now dubbed Generalized Hydrodyn