ﻻ يوجد ملخص باللغة العربية
As online service systems continue to grow in terms of complexity and volume, how service incidents are managed will significantly impact company revenue and user trust. Due to the cascading effect, cloud failures often come with an overwhelming number of incidents from dependent services and devices. To pursue efficient incident management, related incidents should be quickly aggregated to narrow down the problem scope. To this end, in this paper, we propose GRLIA, an incident aggregation framework based on graph representation learning over the cascading graph of cloud failures. A representation vector is learned for each unique type of incident in an unsupervised and unified manner, which is able to simultaneously encode the topological and temporal correlations among incidents. Thus, it can be easily employed for online incident aggregation. In particular, to learn the correlations more accurately, we try to recover the complete scope of failures cascading impact by leveraging fine-grained system monitoring data, i.e., Key Performance Indicators (KPIs). The proposed framework is evaluated with real-world incident data collected from a large-scale online service system of Huawei Cloud. The experimental results demonstrate that GRLIA is effective and outperforms existing methods. Furthermore, our framework has been successfully deployed in industrial practice.
This paper proposes a graph computation based sequential power flow calculation method for Line Commutated Converter (LCC) based large-scale AC/DC systems to achieve a high computing performance. Based on the graph theory, the complex AC/DC system is
Recent studies have shown that graph neural networks (GNNs) are vulnerable against perturbations due to lack of robustness and can therefore be easily fooled. Currently, most works on attacking GNNs are mainly using gradient information to guide the
The graph convolutional network (GCN) is a go-to solution for machine learning on graphs, but its training is notoriously difficult to scale both in terms of graph size and the number of model parameters. Although some work has explored training on l
The ability to compute similarity scores between graphs based on metrics such as Graph Edit Distance (GED) is important in many real-world applications, such as 3D action recognition and biological molecular identification. Computing exact GED values
We introduce a framework for AI-based medical consultation system with knowledge graph embedding and reinforcement learning components and its implement. Our implement of this framework leverages knowledge organized as a graph to have diagnosis accor