ﻻ يوجد ملخص باللغة العربية
This work proposes a novel framework to identify and exploit vulnerable MAC layer procedures in commercial wireless technologies for covert communication. Examples of covert communication include data exfiltration, remote command-and-control (CnC) and espionage. In this framework, the SPARROW schemes use the broadcast power of incumbent wireless networks to covertly relay messages across a long distance without connecting to them. This enables the SPARROW schemes to bypass all security and lawful-intercept systems and gain ample advantage over existing covert techniques in terms of maximum anonymity, more miles per Watts and less hardware. The SPARROW schemes can also serve as an efficient solution for long-range M2M applications. This paper details one recently disclosed vulnerability (CVD-2021-0045 in GSMA coordinated vulnerability disclosure program) in the common random-access procedure in the LTE and 5G standards This work also proposes a rigorous remediation for similar access procedures in current and future standards that disrupts the most sophisticated SPARROW schemes with minimal impact on other users.
The purpose of the covert communication system is to implement the communication process without causing third party perception. In order to achieve complete covert communication, two aspects of security issues need to be considered. The first one is
CSI (Channel State Information) of WiFi systems contains the environment channel response between the transmitter and the receiver, so the people/objects and their movement in between can be sensed. To get CSI, the receiver performs channel estimatio
A new scenario for generating a secret key and two private keys among three Terminals in the presence of an external eavesdropper is considered. Terminals 1, 2 and 3 intend to share a common secret key concealed from the external eavesdropper (Termin
With the evolution of WCN (Wireless communication networks), the absolute fulfillment of security occupies the fundamental concern. In view of security, we have identified another research direction based on the attenuation impact of rain in WCN. An
This paper presents a novel fingerprinting scheme for the Intellectual Property (IP) protection of Generative Adversarial Networks (GANs). Prior solutions for classification models adopt adversarial examples as the fingerprints, which can raise steal