ﻻ يوجد ملخص باللغة العربية
Todays quantum processors composed of fifty or more qubits have allowed us to enter a computational era where the output results are not easily simulatable on the worlds biggest supercomputers. What we have not seen yet, however, is whether or not such quantum complexity can be ever useful for any practical applications. A fundamental question behind this lies in the non-trivial relation between the complexity and its computational power. If we find a clue for how and what quantum complexity could boost the computational power, we might be able to directly utilize the quantum complexity to design quantum computation even with the presence of noise and errors. In this work we introduce a new reservoir computational model for pattern recognition showing a quantum advantage utilizing scale-free networks. This new scheme allows us to utilize the complexity inherent in the scale-free networks, meaning we do not require programing nor optimization of the quantum layer even for other computational tasks. The simplicity in our approach illustrates the computational power in quantum complexity as well as provide new applications for such processors.
Self-similarity is a property of fractal structures, a concept introduced by Mandelbrot and one of the fundamental mathematical results of the 20th century. The importance of fractal geometry stems from the fact that these structures were recognized
Efficient quantum state measurement is important for maximizing the extracted information from a quantum system. For multi-qubit quantum processors in particular, the development of a scalable architecture for rapid and high-fidelity readout remains
Realizing the promise of quantum information processing remains a daunting task, given the omnipresence of noise and error. Adapting noise-resilient classical computing modalities to quantum mechanics may be a viable path towards near-term applicatio
The nascent computational paradigm of quantum reservoir computing presents an attractive use of near-term, noisy-intermediate-scale quantum processors. To understand the potential power and use cases of quantum reservoir computing, it is necessary to
Recent studies introduced biased (degree-dependent) edge percolation as a model for failures in real-life systems. In this work, such process is applied to networks consisting of two types of nodes with edges running only between nodes of unlike type