ﻻ يوجد ملخص باللغة العربية
Exact results concerning ray-tracing methods in Plebanski-Tamm media are derived. In particular, Hamilton equations describing the propagation of quasi-plane wave electromagnetic fields in the geometrical optics regime are explicitly written down in terms of the 3-metric representing the properties of the optical analogue, anisotropic medium. We exemplify our results by obtaining the trajectories of light in the resulting analogue medium recreating Godels universe.
Using the action for the instanton representation of Plebanski gravity (IRPG), we construct minisuperspace solutions restricted to diagonal variables. We have treated the Euclidean signature case with zero cosmological constant, depicting a gravitati
We show that the Plebanski-Demianski spacetime persists as a solution of General Relativity when the theory is supplemented with both, a conformally coupled scalar theory and with quadratic curvature corrections. The quadratic terms are of two types
Using the instanton representation method, we re-construct graviton solutions about DeSitter spacetime. We have used this example as a testing arena to expose the internal structure of the method and to establish that it works for known solutions. Th
General Relativitys Kerr metric is famous for its many symmetries which are responsible for the separability of the Hamilton-Jacobi equation governing the geodesic motion and of the Teukolsky equation for wave dynamics. We show that there is a unique
Ultrashort laser pulse filaments in dispersive nonlinear Kerr media induce a moving refractive index perturbation which modifies the space-time geometry as seen by co-propagating light rays. We study the analogue geometry induced by the filament and