ﻻ يوجد ملخص باللغة العربية
We study the effect of density perturbations on the process of first-order phase transitions and gravitational wave production in the early Universe. We are mainly interested in how the distribution of nucleated bubbles is affected by fluctuations in the local temperature. We find that large-scale density fluctuations ($H_* < k_* < beta$) result in a larger effective bubble size at the time of collision, enhancing the produced amplitude of gravitational waves. The amplitude of the density fluctuations necessary for this enhancement is ${cal P}_zeta (k_*) gtrsim (beta / H_*)^{-2}$, and therefore the gravitational wave signal from first-order phase transitions with relatively large $beta / H_*$ can be significantly enhanced by this mechanism even for fluctuations with moderate amplitudes.
The LISA telescope will provide the first opportunity to probe the scenario of a first-order phase transition happening close to the electroweak scale. By now, it is evident that the main contribution to the GW spectrum comes from the sound waves pro
We study gravitational wave (GW) production in strongly supercooled cosmological phase transitions, taking particular care of models featuring a complex scalar field with a U$(1)$ symmetric potential. We perform lattice simulations of two-bubble coll
Primordial black holes (PBHs) produced in the early Universe have attracted wide interest for their ability to constitute dark matter and explain the compact binary coalescence. We propose a new mechanism of PBH production during first-order phase tr
We study the generation of intergalactic magnetic fields in two models for first-order phase transitions in the early Universe that have been studied previously in connection with the generation of gravitational waves (GWs): the Standard Model supple
We discuss the possibility of forming primordial black holes during a first-order phase transition in the early Universe. As is well known, such a phase transition proceeds through the formation of true-vacuum bubbles in a Universe that is still in a