ﻻ يوجد ملخص باللغة العربية
This paper presents a novel approach for the Vision-and-Language Navigation (VLN) task in continuous 3D environments, which requires an autonomous agent to follow natural language instructions in unseen environments. Existing end-to-end learning-based VLN methods struggle at this task as they focus mostly on utilizing raw visual observations and lack the semantic spatio-temporal reasoning capabilities which is crucial in generalizing to new environments. In this regard, we present a hybrid transformer-recurrence model which focuses on combining classical semantic mapping techniques with a learning-based method. Our method creates a temporal semantic memory by building a top-down local ego-centric semantic map and performs cross-modal grounding to align map and language modalities to enable effective learning of VLN policy. Empirical results in a photo-realistic long-horizon simulation environment show that the proposed approach outperforms a variety of state-of-the-art methods and baselines with over 22% relative improvement in SPL in prior unseen environments.
Deep Learning has revolutionized our ability to solve complex problems such as Vision-and-Language Navigation (VLN). This task requires the agent to navigate to a goal purely based on visual sensory inputs given natural language instructions. However
Learning to follow instructions is of fundamental importance to autonomous agents for vision-and-language navigation (VLN). In this paper, we study how an agent can navigate long paths when learning from a corpus that consists of shorter ones. We sho
Conventional approaches to vision-and-language navigation (VLN) are trained end-to-end but struggle to perform well in freely traversable environments. Inspired by the robotics community, we propose a modular approach to VLN using topological maps. G
Visual events are a composition of temporal actions involving actors spatially interacting with objects. When developing computer vision models that can reason about compositional spatio-temporal events, we need benchmarks that can analyze progress a
One of the most challenging topics in Natural Language Processing (NLP) is visually-grounded language understanding and reasoning. Outdoor vision-and-language navigation (VLN) is such a task where an agent follows natural language instructions and na