ترغب بنشر مسار تعليمي؟ اضغط هنا

Does ADS 9346 have a low-mass companion?

135   0   0.0 ( 0 )
 نشر من قبل Maxim Khovritchev
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف O.V. Kiyaeva




اسأل ChatGPT حول البحث

Based on the photographic and the CCD observations of the relative motion of A, B components of the binary system ADS~9346 obtained with the 26-inch refractor of the Pulkovo Observatory during 1979-2019, we discover an invisible companion associated with the A-star. Comparison of the ephemerides with the positional and the spectroscopic observations allowed us to calculate the preliminary orbit of the photocenter ($P=15$ years). The minimal mass of the companion is approximately $0.13~M_odot$. The existence of the invisible low-mass companion is implied by the IR-excess based on the IRAS data. To confirm this, additional observations of the radial velocity near the periastron need to be carried out.



قيم البحث

اقرأ أيضاً

124 - J.R. Maund , I. Arcavi , M. Ergon 2015
We present late-time Hubble Space Telescope (HST) ultraviolet (UV) and optical observations of the site of SN 2011dh in the galaxy M51, ~1164 days post-explosion. At the SN location, we observe a point source that is visible at all wavelengths, that is significantly fainter than the spectral energy distribution (SED) of the Yellow Supergiant progenitor observed prior to explosion. The previously reported photometry of the progenitor is, therefore, completely unaffected by any sources that may persist at the SN location after explosion. In comparison with the previously reported late-time photometric evolution of SN 2011dh, we find that the light curve has plateaued at all wavelengths. The SED of the late-time source is clearly inconsistent with a SED of stellar origin. Although the SED is bright at UV wavelengths, there is no strong evidence that the late-time luminosity originates solely from a stellar source corresponding to the binary companion, although a partial contribution to the observed UV flux from a companion star can not be ruled out.
We present the discovery of a planetary-mass companion to CFHTWIR-Oph 98, a low-mass brown dwarf member of the young Ophiuchus star-forming region, with a wide 200-au separation (1.46 arcsec). The companion was identified using Hubble Space Telescope images, and confirmed to share common proper motion with the primary using archival and new ground-based observations. Based on the very low probability of the components being unrelated Ophiuchus members, we conclude that Oph 98 AB forms a binary system. From our multi-band photometry, we constrain the primary to be an M9-L1 dwarf, and the faint companion to have an L2-L6 spectral type. For a median age of 3 Myr for Ophiuchus, fits of evolutionary models to measured luminosities yield masses of $15.4pm0.8$ M$_mathrm{Jup}$ for Oph 98 A and $7.8pm0.8$ M$_mathrm{Jup}$ for Oph 98 B, with respective effective temperatures of $2320pm40$ K and $1800pm40$ K. For possible system ages of 1-7 Myr, masses could range from 9.6-18.4 M$_mathrm{Jup}$ for the primary, and from 4.1-11.6 M$_mathrm{Jup}$ for the secondary. The low component masses and very large separation make this binary the lowest binding energy system imaged to date, indicating that the outcome of low-mass star formation can result in such extreme, weakly-bound systems. With such a young age, Oph 98 AB extends the growing population of young free-floating planetary-mass objects, offering a new benchmark to refine formation theories at the lowest masses.
The pulsar PSR J1756$-$2251 resides in a relativistic double neutron star (DNS) binary system with a 7.67-hr orbit. We have conducted long-term precision timing on more than 9 years of data acquired from five telescopes, measuring five post-Keplerian parameters. This has led to several independent tests of general relativity (GR), the most constraining of which shows agreement with the prediction of GR at the 4% level. Our measurement of the orbital decay rate disagrees with that predicted by GR, likely due to systematic observational biases. We have derived the pulsar distance from parallax and orbital decay measurements to be 0.73$_{-0.24}^{+0.60}$ kpc (68%) and < 1.2 kpc (95% upper limit), respectively; these are significantly discrepant from the distance estimated using Galactic electron density models. We have found the pulsar mass to be 1.341$pm$0.007 M$_odot$, and a low neutron star (NS) companion mass of 1.230$pm$0.007 M$_odot$. We also determined an upper limit to the spin-orbit misalignment angle of 34{deg} (95%) based on a system geometry fit to long-term profile width measurements. These and other observed properties have led us to hypothesize an evolution involving a low mass loss, symmetric supernova progenitor to the second-formed NS companion, as is thought to be the case for the double pulsar system PSR J0737$-$3039A/B. This would make PSR J1756$-$2251 the second compact binary system providing concrete evidence for this type of NS formation channel.
HIP96515A is a double-lined spectroscopic binary with a visual companion (HIP96515B) at 8.6 arcsec. It is included in the SACY catalog as a potential young star and classified as an eclipsing binary in the ASAS Catalog. We have analyzed spectroscopic and photometric observations of the triple system. The high-resolution optical spectrum of HIP96515A has been used to derive a mass ratio, M_2/M_1, close to 0.9, with the SB2 components showing spectral types of M1 and M2. The ASAS and Hipparcos light-curves of HIP96515A show periodic variations with P=2.3456 days, confirming that HIP96515A is an eclipsing binary with preliminary parameters of i=89, M_Aa=0.59+-0.03 Msun and M_Ab=0.54+-0.03 Msun, for the primary and secondary, respectively, at an estimated distance of 42+-3 pc. This is a new eclipsing binary with component masses below 0.6 Msun. Multi-epoch observations of HIP 96515 A&B show that the system is a common proper motion pair. The optical spectrum of HIP 96515B is consistent with a pure helium atmosphere (DB) white dwarf. We estimate a total age (main-sequence lifetime plus cooling age) of 400 Myr for the white dwarf. If HIP 96515 A&B are coeval, and assuming a common age of 400 Myr, the comparison of the masses of the eclipsing binary members with evolutionary tracks shows that they are underestimated by ~15% and ~10%, for the primary and secondary, respectively.
The $sim500$, Myr A2IV star HR 1645 has one of the most significant low-amplitude accelerations of nearby early-type stars measured from a comparison of the {it Hipparcos} and {it Gaia} astrometric catalogues. This signal is consistent with either a stellar companion with a moderate mass ratio ($qsim0.5$) on a short period ($P<1$,yr), or a substellar companion at a separation wide enough to be resolved with ground-based high contrast imaging instruments; long-period equal mass ratio stellar companions that are also consistent with the measured acceleration are excluded with previous imaging observations. The small but significant amplitude of the acceleration made HR 1645 a promising candidate for targeted searches for brown dwarf and planetary-mass companions around nearby, young stars. In this paper we explore the origin of the astrometric acceleration by modelling the signal induced by a wide-orbit M8 companion discovered with the Gemini Planet Imager, as well as the effects of an inner short-period spectroscopic companion discovered a century ago but not since followed-up. We present the first constraints on the orbit of the inner companion, and demonstrate that it is a plausible cause of the astrometric acceleration. This result demonstrates the importance of vetting of targets with measured astrometric acceleration for short-period stellar companions prior to conducting targeted direct imaging surveys for wide-orbit substellar companions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا