ترغب بنشر مسار تعليمي؟ اضغط هنا

Mirror-backed dielectric metasurface sensor with ultrahigh figure of merit based on super-narrow Rayleigh anomaly

81   0   0.0 ( 0 )
 نشر من قبل Guangyuan Li
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Plasmonic nanostructures with large local field enhancement have been extensively investigated for sensing applications. However, the quality factor and thus the sensing figure of merit are limited due to relatively high ohmic loss. Here we propose a novel plasmonic sensor with ultrahigh figure of merit based on super-narrow Rayleigh anomaly (RA) in a mirror-backed dielectric metasurface. Simulation results show that the RA in such a metasurface can have a super-high quality factor of 16000 in the visible regime, which is an order of magnitude larger than the highest value of reported plasmonic nanostructures. We attribute this striking performance to the enhanced electric fields far away from the metal film. The super-high quality factor and the greatly enhanced field confined to the superstrate region make the mirror-backed dielectric metasurface an ideal platform for sensing. We show that the figure of merit of this RA-based metasurface sensor can be as high as 15930/RIU. Additionally, we reveal that RA-based plasmonic sensors share some typical characteristics, providing guidance for the structure design. We expect this work advance the development of high-performance plasmonic metasurface sensors.



قيم البحث

اقرأ أيضاً

Spatial light modulators (SLMs) are devices for modulating amplitude, phase or polarization of a light beam on demand. Such devices have been playing an indispensable inuence in many areas from our daily entertainments to scientific researches. In th e past decades, the SLMs have been mainly operated in electrical addressing (EASLM) manner, wherein the writing images are created and loaded via conventional electronic interfaces. However, adoption of pixelated electrodes puts limits on both resolution and efficiency of the EASLMs. Here, we present an optically addressed SLM based on a nonlinear metasurface (MS-OASLM), by which signal light is directly modulated by another writing beam requiring no electrode. The MS-OASLM shows unprecedented compactness and is 400 nm in total thickness benefitting from the outstanding nonlinearity of the metasurface. And their subwavelength feature size enables a high resolution up to 250 line pairs per millimeter, which is more than one order of magnitude better than any currently commercial SLMs. Such MS-OASLMs could provide opportunities to develop the next generation of high resolution displays and all-optical information processing technologies.
Metasurfaces with strongly anisotropic optical properties can support deep subwavelength-scale confined electromagnetic waves (polaritons) that promise opportunities for controlling light in photonic and optoelectronic applications. We develop a mid- infrared hyperbolic metasurface by nanostructuring a thin layer of hexagonal boron nitride supporting deep subwavelength-scale phonon polaritons that propagate with in-plane hyperbolic dispersion. By applying an infrared nanoimaging technique, we visualize the concave (anomalous) wavefronts of a diverging polariton beam, which represent a landmark feature of hyperbolic polaritons. The results illustrate how near-field microscopy can be applied to reveal the exotic wavefronts of polaritons in anisotropic materials, and demonstrate that nanostructured van der Waals materials can form a highly variable and compact platform for hyperbolic infrared metasurface devices and circuits.
Optically resonant dielectric metasurfaces offer unique capability to fully control the wavefront, polarisation, intensity or spectral content of light based on the excitation and interference of different electric and magnetic Mie multipolar resonan ces. Recent advances of the wide accessibility in the nanofabrication and nanotechnologies have led to a surge in the research field of high-quality functional optical metasurfaces which can potentially replace or even outperform conventional optical components with ultra-thin feature. Replacing conventional optical filtering components with metasurface technology offers remarkable advantages including lower integration cost, ultra-thin compact configuration, easy combination with multiple functions and less restriction on materials. Here we propose and experimentally demonstrate a planar narrow-band-pass filter based on the optical dielectric metasurface composed of Si nanoresonators in array. A broadband transmission spectral valley (around 200~nm) has been realised by combining electric and magnetic dipole resonances adjacent to each other. Meanwhile, we obtain a narrow-band transmission peak by exciting a high-quality leaky mode which is formed by partially breaking a bound state in the continuum generated by the collective longitudinal magnetic dipole resonances in the metasurface. Our proposed metasurface-based filter shows a stable performance for oblique light incidence with small angles (within 10 deg). Our work imply many potential applications of nanoscale photonics devices such as displays, spectroscopy, etc.
Metasurfaces have shown promising potentials in shaping optical wavefronts while remaining compact compared to bulky geometric optics devices. Design of meta-atoms, the fundamental building blocks of metasurfaces, relies on trial-and-error method to achieve target electromagnetic responses. This process includes the characterization of an enormous amount of different meta-atom designs with different physical and geometric parameters, which normally demands huge computational resources. In this paper, a deep learning-based metasurface/meta-atom modeling approach is introduced to significantly reduce the characterization time while maintaining accuracy. Based on a convolutional neural network (CNN) structure, the proposed deep learning network is able to model meta-atoms with free-form 2D patterns and different lattice sizes, material refractive indexes and thicknesses. Moreover, the presented approach features the capability to predict meta-atoms wide spectrum responses in the timescale of milliseconds, which makes it attractive for applications such as fast meta-atom/metasurface on-demand designs and optimizations.
106 - Xiaoqing Luo , Fangrong Hu , 2021
Dynamically switchable half-/quarter-wave plates have recently been the focus in the terahertz regime. Conventional design philosophy leads to multilayer metamaterials or narrowband metasurfaces. Here we propose a novel design philosophy and a VO2-me tal hybrid metasurface for achieving broadband dynamically switchable half-/quarter-wave plate (HWP/QWP) based on the transition from the overdamped to the underdamped resonance. Results show that, by varying the VO2 conductivity by three orders of magnitude, the proposed metasurfaces function can be switched between an HWP with polarization conversion ratio larger than 96% and a QWP with ellipticity close to -1 over the broad working band of 0.8-1.2 THz. We expect that the proposed design philosophy will advance the engineering of metasurfaces for dynamically switchable functionalities beyond the terahertz regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا