ﻻ يوجد ملخص باللغة العربية
Many years ago, Rota proposed a program on determining algebraic identities that can be satisfied by linear operators. After an extended period of dormant, progress on this program picked up speed in recent years, thanks to perspectives from operated algebras and Grobner-Shirshov bases. These advances were achieved in a series of papers from special cases to more general situations. These perspectives also indicate that Rotas insight can be manifested very broadly, for other algebraic structures such as Lie algebras, and further in the context of operads. This paper gives a survey on the motivation, early developments and recent advances on Rotas program, for linear operators on associative algebras and Lie algebras. Emphasis will be given to the applications of rewriting systems and Grobner-Shirshov bases. Problems, old and new, are proposed throughout the paper to prompt further developments on Rotas program.
This paper investigates algebraic objects equipped with an operator, such as operated monoids, operated algebras etc. Various free object functors in these operated contexts are explicitly constructed. For operated algebras whose operator satisfies a
We develop a theory of parafree augmented algebras similar to the theory of parafree groups and explore some questions related to the Parafree Conjecture. We provide an example of finitely generated parafree augmented algebra of infinite cohomologica
In this paper, we define the Grobner-Shirshov basis for a dialgebra. The Composition-Diamond lemma for dialgebras is given then. As results, we give Grobner-Shirshov bases for the universal enveloping algebra of a Leibniz algebra, the bar extension o
In this paper, we establish the Composition-Diamond lemma for associative algebras with multiple linear operators. As applications, we obtain Groebner-Shirshov bases of free Rota-Baxter algebra, $lambda$-differential algebra and $lambda$-differential
In this paper, we review Shirshovs method for free Lie algebras invented by him in 1962 which is now called the Groebner-Shirshov bases theory.