ترغب بنشر مسار تعليمي؟ اضغط هنا

Mixed-Salt Enhanced Chemical Vapor Deposition of Two-Dimensional Transition Metal Dichalcogenides

174   0   0.0 ( 0 )
 نشر من قبل Shisheng Li Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The usage of molten salts, e.g., Na2MoO4 and Na2WO4, has shown great success in the growth of two-dimensional (2D) transition metal dichalcogenides (TMDCs) by chemical vapor deposition (CVD). In comparison with the halide salt (i.e., NaCl, NaBr, KI)-assisted growth (Salt 1.0), the molten salt-assisted vapor-liquid-solid (VLS) growth technique (Salt 2.0) has improved the reproducibility, efficiency and scalability of synthesizing 2D TMDCs. However, the growth of large-area MoSe2 and WTe2 is still quite challenging with the use Salt 2.0 technique. In this study, a renewed Salt 2.0 technique using mixed salts (e.g., Na2MoO4-Na2SeO3 and Na2WO4-Na2TeO3) is developed for the enhanced CVD growth of 2D MoSe2 and WTe2 crystals with large grain size and yield. Continuous monolayer MoSe2 film with grain size of 100-250 {mu}m or isolated flakes up to ~ 450 {mu}m is grown on a halved 2-inch SiO2/Si wafer. Our study further confirms the synergistic effect of Na+ and SeO32- in the enhanced CVD growth of wafer-scale monolayer MoSe2 film. And thus, the addition of Na2SeO3 and Na2TeO3 into the transition metal salts could be a general strategy for the enhanced CVD growth of many other 2D selenides and tellurides.



قيم البحث

اقرأ أيضاً

In the crystal growth of transition metal dichalcogenides by the Chemical Vapor Transport method (CVT), the choice of the transport agent plays a key role. We have investigated the effect of various chemical elements and compounds on the growth of Ti Se2, MoSe2, TaS2 and TaSe2 and found that pure I2 is the most suitable for growing TiSe2, whereas transition metal chlorides perform best with Mo- and Ta- chalcogenides. The use of TaCl5 as a transport agent in the CVT process allows to selectively growth either polymorph of TaS2 and TaSe2 and the optimum growth conditions are reported. Moreover, by using TaCl5 and tuning the temperature and the halogen starting ratio, it was possible to grow whiskers of the compounds TaS2, TaSe2, TaTe2, TaS3 and TaSe3.
Monolayers of transition-metal dichalcogenides (TMDs) are characterized by an extraordinarily strong Coulomb interaction giving rise to tightly bound excitons with binding energies of hundreds of meV. Excitons dominate the optical response as well as the ultrafast dynamics in TMDs. As a result, a microscopic understanding of exciton dynamics is the key for technological application of these materials. In spite of this immense importance, elementary processes guiding the formation and relaxation of excitons after optical excitation of an electron-hole plasma has remained unexplored to a large extent. Here, we provide a fully quantum mechanical description of momentum- and energy-resolved exciton dynamics in monolayer molybdenum diselenide (MoSe$_2$) including optical excitation, formation of excitons, radiative recombination as well as phonon-induced cascade-like relaxation down to the excitonic ground state. Based on the gained insights, we reveal experimentally measurable features in pump-probe spectra providing evidence for the exciton relaxation cascade.
Nanographitic structures (NGSs) with multitude of morphological features are grown on SiO2/Si substrates by electron cyclotron resonance - plasma enhanced chemical vapor deposition (ECR-PECVD). CH4 is used as source gas with Ar and H2 as dilutants. F ield emission scanning electron microscopy, high resolution transmission electron microscopy (HRTEM) and Raman spectroscopy are used to study the structural and morphological features of the grown films. Herein, we demonstrate, how the morphology can be tuned from planar to vertical structure using single control parameter namely, dilution of CH4 with Ar and/or H2. Our results show that the competitive growth and etching processes dictate the morphology of the NGSs. While Ar-rich composition favors vertically oriented graphene nanosheets, H2-rich composition aids growth of planar films. Raman analysis reveals dilution of CH4 with either Ar or H2 or in combination helps to improve the structural quality of the films. Line shape analysis of Raman 2D band shows nearly symmetric Lorentzian profile which confirms the turbostratic nature of the grown NGSs. Further, this aspect is elucidated by HRTEM studies by observing elliptical diffraction pattern. Based on these experiments, a comprehensive understanding is obtained on the growth and structural properties of NGSs grown over a wide range of feedstock compositions.
143 - J. Ribeiro-Soares 2014
Transition metal dichalcogenides (TMDCs) have emerged as a new two dimensional materials field since the monolayer and few-layer limits show different properties when compared to each other and to their respective bulk materials. For example, in some cases when the bulk material is exfoliated down to a monolayer, an indirect-to-direct band gap in the visible range is observed. The number of layers $N$ ($N$ even or odd) drives changes in space group symmetry that are reflected in the optical properties. The understanding of the space group symmetry as a function of the number of layers is therefore important for the correct interpretation of the experimental data. Here we present a thorough group theory study of the symmetry aspects relevant to optical and spectroscopic analysis, for the most common polytypes of TMDCs, i.e. $2Ha$, $2Hc$ and $1T$, as a function of the number of layers. Real space symmetries, the group of the wave vectors, the relevance of inversion symmetry, irreducible representations of the vibrational modes, optical selection rules and Raman tensors are discussed.
Great achievements have been made in alloying of two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs), which can allow tunable band gaps for practical applications in optoelectronic devices. However, telluride-based TMDs alloys were less studied due to the difficulties of sample synthesis. Here, in this work we report the large-area synthesis of 2D MoTexSe2-x alloy films with controllable Te composition by a modified alkali metal halides assisted chemical vapor deposition method. The as-prepared films have millimeter-scale transverse size. Raman spectra experiments combining calculated Raman spectra and vibrational images obtained by density functional theory (DFT) confirmed the 2H-phase of the MoTexSe2-x alloys. The A1g mode of MoSe2 shows a significant downshift accompanied by asymmetric broadening to lower wavenumber with increasing value of x, while E12g mode seems unchanged, which were well explained by a phonon confinement model. Our work provides a simple method to synthesize large-scale 2H phase Te-based 2D TMDs alloys for their further applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا