ﻻ يوجد ملخص باللغة العربية
The addition of tunable couplers to superconducting quantum architectures offers significant advantages for scaling compared to fixed coupling approaches. In principle, tunable couplers allow for exact cancellation of qubit-qubit coupling through the interference of two parallel coupling pathways between qubits. However, stray microwave couplings can introduce additional pathways which complicate the interference effect. Here we investigate the primary spectator induced errors of the bus below qubit (BBQ) architecture in a six qubit device. We identify the key design parameters which inhibit ideal cancellation and demonstrate that dynamic cancellation pulses can further mitigate spectator errors.
Performing efficient quantum computer tuneup and calibration is essential for growth in system complexity. In this work we explore the link between facilitating such capabilities and the underlying architecture of the physical hardware. We focus on t
Implementation of high-fidelity two-qubit operations is a key ingredient for scalable quantum error correction. In superconducting qubit architectures tunable buses have been explored as a means to higher fidelity gates. However, these buses introduc
The precise determination of the position of point-like emitters and scatterers using far-field optical imaging techniques is of utmost importance for a wide range of applications in medicine, biology, astronomy, and physics. Although the optical wav
For a variety of superconducting qubits, tunable interactions are achieved through mutual inductive coupling to a coupler circuit containing a nonlinear Josephson element. In this paper we derive the general interaction mediated by such a circuit und
Generating high-fidelity, tunable entanglement between qubits is crucial for realizing gate-based quantum computation. In superconducting circuits, tunable interactions are often implemented using flux-tunable qubits or coupling elements, adding cont