ترغب بنشر مسار تعليمي؟ اضغط هنا

Complete asymptotic expansions for the relativistic Fermi-Dirac integral

81   0   0.0 ( 0 )
 نشر من قبل Nico M. Temme
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Fermi-Dirac integrals appear in problems in nuclear astrophysics, solid state physics or in the fundamental theory of semiconductor modeling, among others areas of application. In this paper, we give new and complete asymptotic expansions for the relativistic Fermi-Dirac integral. These expansions could be useful to obtain a correct qualitative understanding of Fermi systems. The performance of the expansions is illustrated with numerical examples.



قيم البحث

اقرأ أيضاً

151 - Wei Shi , Xiang-Sheng Wang , 2021
In this paper, we present explicit and computable error bounds for the asymptotic expansions of Hermite polynomials with Plancherel-Rotach scale. Three cases, depending on whether the scaled variable lies in the outer or oscillatory interval, or it i s the turning point, are considered respectively. We introduce the branch cut technique to express the error term as an integral on the contour taking as the one-sided limit of curves approaching the branch cut. This new technique enables us to derive simple formulas for the error bounds in terms of elementary functions.
We consider discrete Dirac systems as an alternative (to the famous SzegH{o} recurrencies and matrix orthogonal polynomials) approach to the study of the corresponding block Toeplitz matrices. We prove an analog of the Christoffel--Darboux formula an d derive the asymptotic relations for the analog of reproducing kernel (using Weyl--Titchmarsh functions of discrete Dirac systems). We study also the case of rational Weyl--Titchmarsh functions (and GBDT version of the Backlund-Darboux transformation of the trivial discrete Dirac system). We show that block diagonal plus block semi-separable Toeplitz matrices appear in this case.
We propose two asymptotic expansions of the two interrelated integral-type averages, in the context of the fractional $infty$-Laplacian $Delta_infty^s$ for $sin (frac{1}{2},1)$. This operator has been introduced and first studied in [Bjorland-Caffare lli-Figalli, 2012]. Our expansions are parametrised by the radius of the removed singularity $epsilon$, and allow for the identification of $Delta_infty^sphi(x)$ as the $epsilon^{2s}$-order coefficient of the deviation of the $epsilon$-average from the value $phi(x)$, in the limit $epsilonto 0+$. The averages are well posed for functions $phi$ that are only Borel regular and bounded.
In this paper we investigate Lp-boundedness properties for the higher order Riesz transforms associated with Laguerre operators. Also we prove that the k-th Riesz transform is a principal value singular integral operator (modulus a constant times of the function when k is even). To establish our results we exploit a new identity connecting Riesz transforms in the Hermite and Laguerre settings.
65 - Jeffrey Galkowski 2020
In this article we consider asymptotics for the spectral function of Schrodinger operators on the real line. Let $P:L^2(mathbb{R})to L^2(mathbb{R})$ have the form $$ P:=-tfrac{d^2}{dx^2}+W, $$ where $W$ is a self-adjoint first order differential oper ator with certain modified almost periodic structure. We show that the kernel of the spectral projector, $mathbb{1}_{(-infty,lambda^2]}(P)$ has a full asymptotic expansion in powers of $lambda$. In particular, our class of potentials $W$ is stable under perturbation by formally self-adjoint first order differential operators with smooth, compactly supported coefficients. Moreover, it includes certain potentials with dense pure point spectrum. The proof combines the gauge transform methods of Parnovski-Shterenberg and Sobolev with Melroses scattering calculus.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا