ترغب بنشر مسار تعليمي؟ اضغط هنا

Subwavelength Focusing by Engineered Power Flow-Conformal Metamirrors

137   0   0.0 ( 0 )
 نشر من قبل Hamidreza Taghvaee
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many advances in reflective metasurfaces have been made during the last few years, implementing efficient manipulations of wavefronts, especially for plane waves. Despite numerous solutions that have been developed throughout the years, a practical method to obtain subwavelength focusing without the generation of additional undesired scattering is a challenge to this day. In this paper, we introduce and discuss lossless reflectors for focusing incident waves into a point. The solution is based on the so-called power flow-conformal surfaces that allow theoretically arbitrary shaping of reflected waves. The metamirror shape is adapted to the power flow of the sum of the incident and reflected waves, allowing a local description of the reflector surface based on the surface impedance. In particular, we present a study of two scenarios. First, we study the scenario when the field is emitted by a point source and focused at an image point (in the considered example, with the {lambda}/20 resolution). Second, we analyze a metasurface capable to focus the power of an illuminating plane wave. This work provides a feasible strategy for various applications, including detecting biological signals near the skin, sensitive power focusing for cancer therapy, and point-to-point power transfer.



قيم البحث

اقرأ أيضاً

Reducing a set of diverse bulk-optic-based optical components to a single ultrathin and compact element that enables the same complex functionality has become an emerging research area, propelling further integration and miniaturization in photonics. In this work, we establish a versatile metasurface platform based on gap-surface plasmon meta-atoms enabling efficient linear-polarization conversion along with the complete phase control over reflected fields. Capitalizing on the meta-atom design, multifunctional metamirrors involving linear-polarization conversion and focusing are experimentally demonstrated to generate various kinds of focused beams with distinct phase distributions and wavefronts, reproducing thereby the combined functionalities of conventional half-wave plates, lenses, and even spatial light modulators. The proof-of-concept fabricated metamirrors exhibit excellent capability of linear-polarization conversion and focusing within the wavelength range from 800 to 950 nm under linearly-polarized excitation. The multifunctional metamirrors design developed in this study opens new avenues in the advanced research and applications targeting photonics integration of diversified functionalities.
Micro-sized spheres can focus light into subwavelength spatial domains: a phenomena called photonic nanojet. Even though well studied in three-dimensional (3D) configurations, only a few attempts have been reported to observe similar phenomena in two -dimensional (2D) systems. This, however, is important to take advantage of photonic nanojets in integrated optical systems. Usually, surface plasmon polaritons are suggested for this purpose, but they suffer notoriously from the rather low propagation lengths due to intrinsic absorption. Here, we solve this problem and explore, theoretically, numerically, and experimentally, the use of Bloch surface waves sustained by a suitably structured all-dielectric media to enable subwavelength focusing in an integrated planar optical system. Since only a low index contrast can be achieved while relying on Bloch surface waves, we perceive a new functional element that allows a tight focusing and the observation of a photonic nanojet on top of the surface. We experimentally demonstrate a spot size of 0.66{lambda} in the effective medium. Our approach paves the way to 2D all-dielectric photonic chips for nano-particle manipulation in fluidic devices and sensing applications.
Metasurfaces have shown unprecedented possibilities for wavefront manipulation of waves. The research efforts have been focused on the development of metasurfaces that perform a specific functionality for waves of one physical nature, for example, fo r electromagnetic waves. In this work, we propose the use of power-flow conformal metamirrors for creation of multiphysics devices which can simultaneously control waves of different nature. In particular, we introduce metasurface devices which perform specified operations on both electromagnetic and acoustic waves at the same time. Using a purely analytical model based on surface impedances, we introduce metasurfaces that perform the same functionality for electromagnetic and acoustic waves and, even more challenging, different functionalities for electromagnetics and acoustics. We provide realistic topologies for practical implementations of proposed metasurfaces and confirm the results with numerical simulations.
159 - Viktar Asadchy , Younes Radi , 2014
We introduce the concept of non-uniform metamirrors (full-reflection metasurfaces) providing full control of reflected wave fronts independently from the two sides of the mirror. Metamirror is a single planar array of electrically small bianisotropic inclusions. The electric and magnetic responses of the inclusions enable creating controlled gradient of phase discontinuities over the surface. Furthermore, presence of electromagnetic coupling in the inclusions allows independent control of reflection phase from the opposite sides of the mirror. Based on the proposed concept, we design and simulate metamirrors for highly efficient light bending and near-diffraction-limit focusing with a sub-wavelength focal distance.
In this letter, we introduce stacked fishnet metamaterial for steering light in microwave region. We numerically demonstrate that optical Bloch oscillations and a focus of as small as one sixth of a wavelength can be achieved. The flexibility of vary ing geometrical parameters of the fishnet slabs provides an efficient way for tuning its local effective media parameters and opens the possibility for controlling light arbitrarily. The experiment verifies subwavelength-sized light focusing effect by scanning magnetic field at the surface of the sample directly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا