ﻻ يوجد ملخص باللغة العربية
In citet{Stangalini20} and citet{Deb20}, magnetic oscillations were detected in the chromosphere of a large sunspot and found to be linked to the coronal locations where a First Ionization Potential (FIP) effect was observed. In an attempt to shed light onto the possible excitation mechanisms of these localized waves, we further investigate the same data by focussing on the relation between the spatial distribution of the magnetic wave power and the overall field geometry and plasma parameters obtained from multi-height spectropolarimetric non-local thermodynamic equilibrium (NLTE)
The enrichment of coronal loops and the slow solar wind with elements that have low First Ionisation Potential, known as the FIP effect, has often been interpreted as the tracer of a common origin. A current explanation for this FIP fractionation res
It is generally accepted that solar acoustic (p) modes are excited by near-surface turbulent motions, in particular, by downdrafts and interacting vortices in intergranular lanes. Recent analysis of Solar Dynamics Observatory data by (Zhao et al., 20
Are the kG-strength magnetic fields observed in young stars a fossil field left over from their formation or are they generated by a dynamo? We use radiation non-ideal magnetohydrodynamics simulations of the gravitational collapse of a rotating, magn
High-field magnetic white dwarfs have been long suspected to be the result of stellar mergers. However, the nature of the coalescing stars and the precise mechanism that produces the magnetic field are still unknown. Here we show that the hot, convec
Many previous studies have shown that magnetic fields as well as sunspot structures present rapid and irreversible changes associated with solar flares. In this paper we first use five X-class flares observed by SDO/HMI to show that not only the magn