ﻻ يوجد ملخص باللغة العربية
Recently it was shown that the scaling dimension of the operator $phi^n$ in $lambda(barphiphi)^2$ theory may be computed semiclassically at the Wilson-Fisher fixed point in $d=4-epsilon$, for generic values of $lambda n$, and this was verified to two loop order in perturbation theory at leading and subleading $n$. This result was subsequently generalised to operators of fixed charge $Q$ in $O(N)$ theory and verified up to four loops in perturbation theory at leading and subleading $Q$. More recently, similar semiclassical calculations have been performed for the classically scale-invariant $U(N)times U(N)$ theory in four dimensions, and verified up to two loops, once again at leading and subleading $Q$. Here we extend this verification to four loops. We also consider the corresponding classically scale-invariant theory in three dimensions, similarly verifying the leading and subleading semiclassical results up to four loops in perturbation theory.
Recently it was shown that the scaling dimension of the operator $phi^n$ in $lambda(phi^*phi)^2$ theory may be computed semi-classically at the Wilson-Fisher fixed point in $d=4-epsilon$, for generic values of $lambda n$ and this was verified to two
This is an edited version of an unpublished 1979 EFI (U. Chicago) preprint: The U(N) lattice gauge theory in 2-dimensions can be considered as the statistical mechanics of a Coulomb gas on a circle in a constant electric field. The large N limit of t
We apply a semi-classical method to compute the conformal field theory (CFT) data for the U(N)xU(N) non-abelian Higgs theory in four minus epsilon dimensions at its complex fixed point. The theory features more than one coupling and walking dynamics.
Using the F-theory realization, we identify a subclass of 6d (1,0) SCFTs whose compactification on a Riemann surface leads to N = 1 4d SCFTs where the moduli space of the Riemann surface is part of the moduli space of the theory. In particular we arg
We compute four-point correlation functions of scalar composite operators in the N=4 supercurrent multiplet at order g^4 using the N=1 superfield formalism. We confirm the interpretation of short-distance logarithmic behaviours in terms of anomalous