ترغب بنشر مسار تعليمي؟ اضغط هنا

Detecting Small Objects in Thermal Images Using Single-Shot Detector

94   0   0.0 ( 0 )
 نشر من قبل Hao Zhang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

SSD (Single Shot Multibox Detector) is one of the most successful object detectors for its high accuracy and fast speed. However, the features from shallow layer (mainly Conv4_3) of SSD lack semantic information, resulting in poor performance in small objects. In this paper, we proposed DDSSD (Dilation and Deconvolution Single Shot Multibox Detector), an enhanced SSD with a novel feature fusion module which can improve the performance over SSD for small object detection. In the feature fusion module, dilation convolution module is utilized to enlarge the receptive field of features from shallow layer and deconvolution module is adopted to increase the size of feature maps from high layer. Our network achieves 79.7% mAP on PASCAL VOC2007 test and 28.3% mmAP on MS COCO test-dev at 41 FPS with only 300x300 input using a single Nvidia 1080 GPU. Especially, for small objects, DDSSD achieves 10.5% on MS COCO and 22.8% on FLIR thermal dataset, outperforming a lot of state-of-the-art object detection algorithms in both aspects of accuracy and speed.



قيم البحث

اقرأ أيضاً

101 - Lisha Cui , Rui Ma , Pei Lv 2018
For most of the object detectors based on multi-scale feature maps, the shallow layers are rich in fine spatial information and thus mainly responsible for small object detection. The performance of small object detection, however, is still less than satisfactory because of the deficiency of semantic information on shallow feature maps. In this paper, we design a Multi-scale Deconvolutional Single Shot Detector (MDSSD), especially for small object detection. In MDSSD, multiple high-level feature maps at different scales are upsampled simultaneously to increase the spatial resolution. Afterwards, we implement the skip connections with low-level feature maps via Fusion Block. The fusion feature maps, named Fusion Module, are of strong feature representational power of small instances. It is noteworthy that these high-level feature maps utilized in Fusion Block preserve both strong semantic information and some fine details of small instances, rather than the top-most layer where the representation of fine details for small objects are potentially wiped out. The proposed framework achieves 77.6% mAP for small object detection on the challenging dataset TT100K with 512 x 512 input, outperforming other detectors with a large margin. Moreover, it can also achieve state-of-the-art results for general object detection on PASCAL VOC2007 test and MS COCO test-dev2015, especially achieving 2 to 5 points improvement on small object categories.
Single shot detectors that are potentially faster and simpler than two-stage detectors tend to be more applicable to object detection in videos. Nevertheless, the extension of such object detectors from image to video is not trivial especially when a ppearance deterioration exists in videos, emph{e.g.}, motion blur or occlusion. A valid question is how to explore temporal coherence across frames for boosting detection. In this paper, we propose to address the problem by enhancing per-frame features through aggregation of neighboring frames. Specifically, we present Single Shot Video Object Detector (SSVD) -- a new architecture that novelly integrates feature aggregation into a one-stage detector for object detection in videos. Technically, SSVD takes Feature Pyramid Network (FPN) as backbone network to produce multi-scale features. Unlike the existing feature aggregation methods, SSVD, on one hand, estimates the motion and aggregates the nearby features along the motion path, and on the other, hallucinates features by directly sampling features from the adjacent frames in a two-stream structure. Extensive experiments are conducted on ImageNet VID dataset, and competitive results are reported when comparing to state-of-the-art approaches. More remarkably, for $448 times 448$ input, SSVD achieves 79.2% mAP on ImageNet VID, by processing one frame in 85 ms on an Nvidia Titan X Pascal GPU. The code is available at url{https://github.com/ddjiajun/SSVD}.
95 - Jian Ding , Nan Xue , Yang Long 2018
Object detection in aerial images is an active yet challenging task in computer vision because of the birdview perspective, the highly complex backgrounds, and the variant appearances of objects. Especially when detecting densely packed objects in ae rial images, methods relying on horizontal proposals for common object detection often introduce mismatches between the Region of Interests (RoIs) and objects. This leads to the common misalignment between the final object classification confidence and localization accuracy. Although rotated anchors have been used to tackle this problem, the design of them always multiplies the number of anchors and dramatically increases the computational complexity. In this paper, we propose a RoI Transformer to address these problems. More precisely, to improve the quality of region proposals, we first designed a Rotated RoI (RRoI) learner to transform a Horizontal Region of Interest (HRoI) into a Rotated Region of Interest (RRoI). Based on the RRoIs, we then proposed a Rotated Position Sensitive RoI Align (RPS-RoI-Align) module to extract rotation-invariant features from them for boosting subsequent classification and regression. Our RoI Transformer is with light weight and can be easily embedded into detectors for oriented object detection. A simple implementation of the RoI Transformer has achieved state-of-the-art performances on two common and challenging aerial datasets, i.e., DOTA and HRSC2016, with a neglectable reduction to detection speed. Our RoI Transformer exceeds the deformable Position Sensitive RoI pooling when oriented bounding-box annotations are available. Extensive experiments have also validated the flexibility and effectiveness of our RoI Transformer. The results demonstrate that it can be easily integrated with other detector architectures and significantly improve the performances.
345 - Jiechao Ma , Xiang Li , Hongwei Li 2018
Early diagnosis of pulmonary nodules (PNs) can improve the survival rate of patients and yet is a challenging task for radiologists due to the image noise and artifacts in computed tomography (CT) images. In this paper, we propose a novel and effecti ve abnormality detector implementing the attention mechanism and group convolution on 3D single-shot detector (SSD) called group-attention SSD (GA-SSD). We find that group convolution is effective in extracting rich context information between continuous slices, and attention network can learn the target features automatically. We collected a large-scale dataset that contained 4146 CT scans with annotations of varying types and sizes of PNs (even PNs smaller than 3mm were annotated). To the best of our knowledge, this dataset is the largest cohort with relatively complete annotations for PNs detection. Our experimental results show that the proposed group-attention SSD outperforms the classic SSD framework as well as the state-of-the-art 3DCNN, especially on some challenging lesion types.
We present a simple yet effective prediction module for a one-stage detector. The main process is conducted in a coarse-to-fine manner. First, the module roughly adjusts the default boxes to well capture the extent of target objects in an image. Seco nd, given the adjusted boxes, the module aligns the receptive field of the convolution filters accordingly, not requiring any embedding layers. Both steps build a propose-and-attend mechanism, mimicking two-stage detectors in a highly efficient manner. To verify its effectiveness, we apply the proposed module to a basic one-stage detector SSD. Our final model achieves an accuracy comparable to that of state-of-the-art detectors while using a fraction of their model parameters and computational overheads. Moreover, we found that the proposed module has two strong applications. 1) The module can be successfully integrated into a lightweight backbone, further pushing the efficiency of the one-stage detector. 2) The module also allows train-from-scratch without relying on any sophisticated base networks as previous methods do.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا