ﻻ يوجد ملخص باللغة العربية
We study observational constraints on the non-metricity $f(Q)$-gravity which reproduces an exact $Lambda$CDM background expansion history while modifying the evolution of linear perturbations. To this purpose we use Cosmic Microwave Background (CMB) radiation, baryonic acoustic oscillations (BAO), redshift-space distortions (RSD), supernovae type Ia (SNIa), galaxy clustering (GC) and weak gravitational lensing (WL) measurements. We set stringent constraints on the parameter of the model controlling the modifications to the gravitational interaction at linear perturbation level. We find the model to be statistically preferred by data over the $Lambda$CDM according to the $chi^2$ and deviance information criterion statistics for the combination with CMB, BAO, RSD and SNIa. This is mostly associated to a better fit to the low-$ell$ tail of CMB temperature anisotropies.
We propose a novel model in the framework of $f(Q)$ gravity, which is a gravitational modification class arising from the incorporation of non-metricity. The model has General Relativity as a particular limit, it has the same number of free parameter
We study the phenomenology of a class of minimally modified gravity theories called $f(mathcal{H})$ theories, in which the usual general relativistic Hamiltonian constraint is replaced by a free function of it. After reviewing the construction of the
We analyze Brans-Dicke gravity with a cosmological constant, $Lambda$, and cold dark matter (BD-$Lambda$CDM for short) in the light of the latest cosmological observations on distant supernovae, Hubble rate measurements at different redshifts, baryon
We construct a generalization of the standard $Lambda$CDM model, wherein we simultaneously replace the spatially flat Robertson-Walker metric with its simplest anisotropic generalization (LRS Bianchi I metric), and couple the cold dark matter to the
We present a detailed investigation of the Rastall gravity extension of the standard $Lambda$CDM model. We review the model for two simultaneous modifications of different nature in the Friedmann equation due to the Rastall gravity: the new contribut