ترغب بنشر مسار تعليمي؟ اضغط هنا

Transversity GPDs of the proton from lattice QCD

93   0   0.0 ( 0 )
 نشر من قبل Martha Constantinou
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first calculation of the $x$-dependence of the isovector transversity generalized parton distributions (GPDs) for the proton within lattice QCD. We compute the matrix elements with non-local operators containing a Wilson line. The calculation implements the Breit symmetric frame. The proton momenta are chosen as $0.83,,1.25,,1.67$ GeV, and the values of the momentum transfer squared are $0.69,,1.02$ GeV$^2$. These combinations include cases with zero and nonzero skewness. The calculation is performed using one ensemble of two degenerate-mass light, a strange and a charm quark of maximally twisted mass fermions with a clover term. The lattice results are renormalized non-perturbatively and finally matched to the light-cone GPDs using one-loop perturbation theory within the framework of large momentum effective theory. The final GPDs are given in the $overline{rm MS}$ scheme at a scale of 2 GeV. In addition to the individual GPDs, we form the combination of the transversity GPDs that is related to the transverse spin structure of the proton. Finally, we extract the lowest two moments of GPDs and draw a number of important qualitative conclusions.



قيم البحث

اقرأ أيضاً

We present the first direct calculation of the transversity parton distribution function within the nucleon from lattice QCD. The calculation is performed using simulations with the light quark mass fixed to its physical value and at one value of the lattice spacing. Novel elements of the calculations are non-perturbative renormalization and extraction of a formula for the matching to light-cone PDFs. Final results are presented in the $overline{rm MS}$ scheme at a scale of $sqrt{2}$ GeV.
In the past year, we calculated with lattice QCD three quantities that were unknown or poorly known. They are the $q^2$ dependence of the form factor in semileptonic $Dto Kl u$ decay, the decay constant of the $D$ meson, and the mass of the $B_c$ mes on. In this talk, we summarize these calculations, with emphasis on their (subsequent) confirmation by experiments.
We present the first calculation of the $x$-dependence of the proton generalized parton distributions (GPDs) within lattice QCD. Results are obtained for the isovector unpolarized and helicity GPDs. We compute the appropriate matrix elements of fast- moving protons coupled to non-local operators containing a Wilson line. We present results for proton momenta $0.83,,1.25,,1.67$ GeV, and momentum transfer squared $0.69,,1.38$ GeV$^2$. These combinations include cases with zero and nonzero skewness. The calculation is performed using one ensemble of two degenerate mass light, a strange and a charm quark of maximally twisted mass fermions with a clover term. The lattice results are matched to the light-cone GPDs using one-loop perturbation theory within the framework of large momentum effective theory. The final GPDs are given in the $overline{rm MS}$ scheme at a scale of 2 GeV.
We report a state-of-the-art lattice calculation of the isovector quark transversity distribution of the proton at the physical pion mass. Within the framework of large-momentum effective theory (LaMET), we compute the transversity quasi-distribution s using clover valence fermions on 2+1+1-flavor (up/down, strange, charm) HISQ-lattice configurations with boosted proton momenta as large as 3.0~GeV. The relevant lattice matrix elements are nonperturbatively renormalized in regularization-independent momentum-subtraction (RI/MOM) scheme and systematically matched to the physical transversity distribution. With high statistics, large proton momenta and meticulous control of excited-state contamination, we provide the best theoretical prediction for the large-$x$ isovector quark transversity distribution, with better precision than the most recent global analyses of experimental data. Our result also shows that the sea quark asymmetry in the proton transversity distribution is consistent with zero, which has been assumed in all current global analyses.
184 - Dru B. Renner 2011
As algorithms and computing power have advanced, lattice QCD has become a precision technique for many QCD observables. However, the calculation of nucleon matrix elements remains an open challenge. I summarize the status of the lattice effort by exa mining one observable that has come to represent this challenge, average-x: the fraction of the nucleons momentum carried by its quark constituents. Recent results confirm a long standing tendency to overshoot the experimentally measured value. Understanding this puzzle is essential to not only the lattice calculation of nucleon properties but also the broader effort to determine hadron structure from QCD.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا