ترغب بنشر مسار تعليمي؟ اضغط هنا

Federated Learning for UAV Swarms Under Class Imbalance and Power Consumption Constraints

101   0   0.0 ( 0 )
 نشر من قبل Lutfi Samara Dr
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The usage of unmanned aerial vehicles (UAVs) in civil and military applications continues to increase due to the numerous advantages that they provide over conventional approaches. Despite the abundance of such advantages, it is imperative to investigate the performance of UAV utilization while considering their design limitations. This paper investigates the deployment of UAV swarms when each UAV carries a machine learning classification task. To avoid data exchange with ground-based processing nodes, a federated learning approach is adopted between a UAV leader and the swarm members to improve the local learning model while avoiding excessive air-to-ground and ground-to-air communications. Moreover, the proposed deployment framework considers the stringent energy constraints of UAVs and the problem of class imbalance, where we show that considering these design parameters significantly improves the performances of the UAV swarm in terms of classification accuracy, energy consumption and availability of UAVs when compared with several baseline algorithms.



قيم البحث

اقرأ أيضاً

235 - Lixu Wang , Shichao Xu , Xiao Wang 2020
Federated learning (FL) is a promising approach for training decentralized data located on local client devices while improving efficiency and privacy. However, the distribution and quantity of the training data on the clients side may lead to signif icant challenges such as class imbalance and non-IID (non-independent and identically distributed) data, which could greatly impact the performance of the common model. While much effort has been devoted to helping FL models converge when encountering non-IID data, the imbalance issue has not been sufficiently addressed. In particular, as FL training is executed by exchanging gradients in an encrypted form, the training data is not completely observable to either clients or servers, and previous methods for class imbalance do not perform well for FL. Therefore, it is crucial to design new methods for detecting class imbalance in FL and mitigating its impact. In this work, we propose a monitoring scheme that can infer the composition of training data for each FL round, and design a new loss function -- textbf{Ratio Loss} to mitigate the impact of the imbalance. Our experiments demonstrate the importance of acknowledging class imbalance and taking measures as early as possible in FL training, and the effectiveness of our method in mitigating the impact. Our method is shown to significantly outperform previous methods, while maintaining client privacy.
163 - C. Xiao , S. Wang 2021
Federated learning is a distributed machine learning paradigm that trains a global model for prediction based on a number of local models at clients while local data privacy is preserved. Class imbalance is believed to be one of the factors that degr ades the global model performance. However, there has been very little research on if and how class imbalance can affect the global performance. class imbalance in federated learning is much more complex than that in traditional non-distributed machine learning, due to different class imbalance situations at local clients. Class imbalance needs to be re-defined in distributed learning environments. In this paper, first, we propose two new metrics to define class imbalance -- the global class imbalance degree (MID) and the local difference of class imbalance among clients (WCS). Then, we conduct extensive experiments to analyze the impact of class imbalance on the global performance in various scenarios based on our definition. Our results show that a higher MID and a larger WCS degrade more the performance of the global model. Besides, WCS is shown to slow down the convergence of the global model by misdirecting the optimization.
Few-Shot Learning (FSL) algorithms are commonly trained through Meta-Learning (ML), which exposes models to batches of tasks sampled from a meta-dataset to mimic tasks seen during evaluation. However, the standard training procedures overlook the rea l-world dynamics where classes commonly occur at different frequencies. While it is generally understood that class imbalance harms the performance of supervised methods, limited research examines the impact of imbalance on the FSL evaluation task. Our analysis compares 10 state-of-the-art meta-learning and FSL methods on different imbalance distributions and rebalancing techniques. Our results reveal that 1) some FSL methods display a natural disposition against imbalance while most other approaches produce a performance drop by up to 17% compared to the balanced task without the appropriate mitigation; 2) contrary to popular belief, many meta-learning algorithms will not automatically learn to balance from exposure to imbalanced training tasks; 3) classical rebalancing strategies, such as random oversampling, can still be very effective, leading to state-of-the-art performances and should not be overlooked; 4) FSL methods are more robust against meta-dataset imbalance than imbalance at the task-level with a similar imbalance ratio ($rho<20$), with the effect holding even in long-tail datasets under a larger imbalance ($rho=65$).
The success of deep learning (DL) methods in the Brain-Computer Interfaces (BCI) field for classification of electroencephalographic (EEG) recordings has been restricted by the lack of large datasets. Privacy concerns associated with EEG signals limi t the possibility of constructing a large EEG-BCI dataset by the conglomeration of multiple small ones for jointly training machine learning models. Hence, in this paper, we propose a novel privacy-preserving DL architecture named federated transfer learning (FTL) for EEG classification that is based on the federated learning framework. Working with the single-trial covariance matrix, the proposed architecture extracts common discriminative information from multi-subject EEG data with the help of domain adaptation techniques. We evaluate the performance of the proposed architecture on the PhysioNet dataset for 2-class motor imagery classification. While avoiding the actual data sharing, our FTL approach achieves 2% higher classification accuracy in a subject-adaptive analysis. Also, in the absence of multi-subject data, our architecture provides 6% better accuracy compared to other state-of-the-art DL architectures.
145 - Xiaowen Cao , Guangxu Zhu , Jie Xu 2020
Over-the-air federated edge learning (Air-FEEL) is a communication-efficient solution for privacy-preserving distributed learning over wireless networks. Air-FEEL allows one-shot over-the-air aggregation of gradient/model-updates by exploiting the wa veform superposition property of wireless channels, and thus promises an extremely low aggregation latency that is independent of the network size. However, such communication efficiency may come at a cost of learning performance degradation due to the aggregation error caused by the non-uniform channel fading over devices and noise perturbation. Prior work adopted channel inversion power control (or its variants) to reduce the aggregation error by aligning the channel gains, which, however, could be highly suboptimal in deep fading scenarios due to the noise amplification. To overcome this issue, we investigate the power control optimization for enhancing the learning performance of Air-FEEL. Towards this end, we first analyze the convergence behavior of the Air-FEEL by deriving the optimality gap of the loss-function under any given power control policy. Then we optimize the power control to minimize the optimality gap for accelerating convergence, subject to a set of average and maximum power constraints at edge devices. The problem is generally non-convex and challenging to solve due to the coupling of power control variables over different devices and iterations. To tackle this challenge, we develop an efficient algorithm by jointly exploiting the successive convex approximation (SCA) and trust region methods. Numerical results show that the optimized power control policy achieves significantly faster convergence than the benchmark policies such as channel inversion and uniform power transmission.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا