ترغب بنشر مسار تعليمي؟ اضغط هنا

$F$-factors in Quasi-random Hypergraphs

76   0   0.0 ( 0 )
 نشر من قبل Wenling Zhou
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Given $kge 2$ and two $k$-graphs ($k$-uniform hypergraphs) $F$ and $H$, an $F$-factor in $H$ is a set of vertex disjoint copies of $F$ that together covers the vertex set of $H$. Lenz and Mubayi [J. Combin. Theory Ser. B, 2016] studied the $F$-factor problem in quasi-random $k$-graphs with minimum degree $Omega(n^{k-1})$. They posed the problem of characterizing the $k$-graphs $F$ such that every sufficiently large quasi-random $k$-graph with constant edge density and minimum degree $Omega(n^{k-1})$ contains an $F$-factor, and in particular, they showed that all linear $k$-graphs satisfy this property. In this paper we prove a general theorem on $F$-factors which reduces the $F$-factor problem of Lenz and Mubayi to a natural sub-problem, that is, the $F$-cover problem. By using this result, we answer the question of Lenz and Mubayi for those $F$ which are $k$-partite $k$-graphs, and for all 3-graphs $F$, separately. Our characterization result on 3-graphs is motivated by the recent work of Reiher, Rodl and Schacht [J. Lond. Math. Soc., 2018] that classifies the 3-graphs with vanishing Turan density in quasi-random $k$-graphs.



قيم البحث

اقرأ أيضاً

We determine, up to a multiplicative constant, the optimal number of random edges that need to be added to a $k$-graph $H$ with minimum vertex degree $Omega(n^{k-1})$ to ensure an $F$-factor with high probability, for any $F$ that belongs to a certai n class $mathcal{F}$ of $k$-graphs, which includes, e.g., all $k$-partite $k$-graphs, $K_4^{(3)-}$ and the Fano plane. In particular, taking $F$ to be a single edge, this settles a problem of Krivelevich, Kwan and Sudakov [Combin. Probab. Comput. 25 (2016), 909--927]. We also address the case in which the host graph $H$ is not dense, indicating that starting from certain such $H$ is essentially the same as starting from an empty graph (namely, the purely random model).
Given integers $k,j$ with $1le j le k-1$, we consider the length of the longest $j$-tight path in the binomial random $k$-uniform hypergraph $H^k(n,p)$. We show that this length undergoes a phase transition from logarithmic length to linear and deter mine the critical threshold, as well as proving upper and lower bounds on the length in the subcritical and supercritical ranges. In particular, for the supercritical case we introduce the `Pathfinder algorithm, a depth-first search algorithm which discovers $j$-tight paths in a $k$-uniform hypergraph. We prove that, in the supercritical case, with high probability this algorithm will find a long $j$-tight path.
In this paper, we study the spectra of regular hypergraphs following the definitions from Feng and Li (1996). Our main result is an analog of Alons conjecture for the spectral gap of the random regular hypergraphs. We then relate the second eigenvalu es to both its expansion property and the mixing rate of the non-backtracking random walk on regular hypergraphs. We also prove the spectral gap for the non-backtracking operator of a random regular hypergraph introduced in Angelini et al. (2015). Finally, we obtain the convergence of the empirical spectral distribution (ESD) for random regular hypergraphs in different regimes. Under certain conditions, we can show a local law for the ESD.
Inspired by the study of loose cycles in hypergraphs, we define the emph{loose core} in hypergraphs as a structure which mirrors the close relationship between cycles and $2$-cores in graphs. We prove that in the $r$-uniform binomial random hypergrap h $H^r(n,p)$, the order of the loose core undergoes a phase transition at a certain critical threshold and determine this order, as well as the number of edges, asymptotically in the subcritical and supercritical regimes. Our main tool is an algorithm called CoreConstruct, which enables us to analyse a peeling process for the loose core. By analysing this algorithm we determine the asymptotic degree distribution of vertices in the loose core and in particular how many vertices and edges the loose core contains. As a corollary we obtain an improved upper bound on the length of the longest loose cycle in $H^r(n,p)$.
89 - Oliver Cooley 2021
We prove a lower bound on the length of the longest $j$-tight cycle in a $k$-uniform binomial random hypergraph for any $2 le j le k-1$. We first prove the existence of a $j$-tight path of the required length. The standard sprinkling argument is not enough to show that this path can be closed to a $j$-tight cycle -- we therefore show that the path has many extensions, which is sufficient to allow the sprinkling to close the cycle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا