ﻻ يوجد ملخص باللغة العربية
Given $kge 2$ and two $k$-graphs ($k$-uniform hypergraphs) $F$ and $H$, an $F$-factor in $H$ is a set of vertex disjoint copies of $F$ that together covers the vertex set of $H$. Lenz and Mubayi [J. Combin. Theory Ser. B, 2016] studied the $F$-factor problem in quasi-random $k$-graphs with minimum degree $Omega(n^{k-1})$. They posed the problem of characterizing the $k$-graphs $F$ such that every sufficiently large quasi-random $k$-graph with constant edge density and minimum degree $Omega(n^{k-1})$ contains an $F$-factor, and in particular, they showed that all linear $k$-graphs satisfy this property. In this paper we prove a general theorem on $F$-factors which reduces the $F$-factor problem of Lenz and Mubayi to a natural sub-problem, that is, the $F$-cover problem. By using this result, we answer the question of Lenz and Mubayi for those $F$ which are $k$-partite $k$-graphs, and for all 3-graphs $F$, separately. Our characterization result on 3-graphs is motivated by the recent work of Reiher, Rodl and Schacht [J. Lond. Math. Soc., 2018] that classifies the 3-graphs with vanishing Turan density in quasi-random $k$-graphs.
We determine, up to a multiplicative constant, the optimal number of random edges that need to be added to a $k$-graph $H$ with minimum vertex degree $Omega(n^{k-1})$ to ensure an $F$-factor with high probability, for any $F$ that belongs to a certai
Given integers $k,j$ with $1le j le k-1$, we consider the length of the longest $j$-tight path in the binomial random $k$-uniform hypergraph $H^k(n,p)$. We show that this length undergoes a phase transition from logarithmic length to linear and deter
In this paper, we study the spectra of regular hypergraphs following the definitions from Feng and Li (1996). Our main result is an analog of Alons conjecture for the spectral gap of the random regular hypergraphs. We then relate the second eigenvalu
Inspired by the study of loose cycles in hypergraphs, we define the emph{loose core} in hypergraphs as a structure which mirrors the close relationship between cycles and $2$-cores in graphs. We prove that in the $r$-uniform binomial random hypergrap
We prove a lower bound on the length of the longest $j$-tight cycle in a $k$-uniform binomial random hypergraph for any $2 le j le k-1$. We first prove the existence of a $j$-tight path of the required length. The standard sprinkling argument is not