ﻻ يوجد ملخص باللغة العربية
In this paper, we study the energy equality for weak solutions to the non-resistive MHD equations with physical boundaries. Although the equations of magnetic field $b$ are of hyperbolic type, and the boundary effects are considered, we still prove the global energy equality provided that $u in L^{q}_{loc}left(0, T ; L^{p}(Omega)right) text { for any } frac{1}{q}+frac{1}{p} leq frac{1}{2}, text { with } p geq 4,text{ and } b in L^{r}_{loc}left(0, T ; L^{s}(Omega)right) text { for any } frac{1}{r}+frac{1}{s} leq frac{1}{2}, text { with } s geq 4 $. In particular, compared with the existed results, we do not require any boundary layer assumptions and additional conditions on the pressure $P$. Our result requires the regularity of boundary $partialOmega$ is only Lipschitz which is the minimum requirement to make the boundary condition $bcdot n$ sense. To approach our result, we first separate the mollification of weak solutions from the boundary effect by considering a non-standard local energy equality and transform the boundary effects into the estimates of the gradient of cut-off functions. Then, by establishing a sharp $L^2L^2$ estimate for pressure $P$, we use zero boundary conditions of $u$ to inhibit the boundary effect and obtain global energy equality by choosing suitable cut-off functions.
This paper establishes the local-in-time existence and uniqueness of strong solutions in $H^{s}$ for $s > n/2$ to the viscous, non-resistive magnetohydrodynamics (MHD) equations in $mathbb{R}^{n}$, $n=2, 3$, as well as for a related model where the a
This paper is concerned with the asymptotic behaviors of global strong solutions to the incompressible non-resistive viscous magnetohydrodynamic (MHD) equations with large initial perturbations in two-dimensional periodic domains in Lagrangian coordi
In this paper, we address the space-time decay properties for strong solutions to the incompressible viscous resistive Hall-MHD equations. We obtained the same space-time decay rates as those of the heat equation. Based on the temporal decay results
In this paper, we mainly investigate the Cauchy problem of the non-resistive MHD equation. We first establish the local existence in the homogeneous Besov space $dot{B}^{frac{d}{p}-1}_{p,1}times dot{B}^{frac{d}{p}}_{p,1}$ with $p<infty$, and give a l
Onsager conjectured that weak solutions of the Euler equations for incompressible fluids in 3D conserve energy only if they have a certain minimal smoothness, (of order of 1/3 fractional derivatives) and that they dissipate energy if they are rougher