ﻻ يوجد ملخص باللغة العربية
With an increasing number of expected gravitational-wave detections of binary neutron star mergers, it is essential that gravitational-wave models employed for the analysis of observational data are able to describe generic compact binary systems. This includes systems in which the individual neutron stars are millisecond pulsars for which spin effects become essential. In this work, we perform numerical-relativity simulations of binary neutron stars with aligned and anti-aligned spins within a range of dimensionless spins of $chi sim [-0.28,0.58]$. The simulations are performed with multiple resolutions, show a clear convergence order and, consequently, can be used to test existing waveform approximants. We find that for very high spins gravitational-wave models that have been employed for the interpretation of GW170817 and GW190425 are not capable of describing our numerical-relativity dataset. We verify through a full parameter estimation study in which clear biases in the estimate of the tidal deformability and effective spin are present. We hope that in preparation of the next gravitational-wave observing run of the Advanced LIGO and Advanced Virgo detectors our new set of numerical-relativity data can be used to support future developments of new gravitational-wave models.
The recent detection of gravitational waves and electromagnetic counterparts emitted during and after the collision of two neutron stars marks a breakthrough in the field of multi-messenger astronomy. Numerical relativity simulations are the only too
High-accuracy numerical simulations of merging neutron stars play an important role in testing and calibrating the waveform models used by gravitational wave observatories. Obtaining high-accuracy waveforms at a reasonable computational cost, however
We have studied the dynamics of an equal-mass magnetized neutron-star binary within a resistive magnetohydrodynamic (RMHD) approach in which the highly conducting stellar interior is matched to an electrovacuum exterior. Because our analysis is aimed
We present the first set of numerical relativity simulations of binary neutron mergers that include spin precession effects and are evolved with multiple resolutions. Our simulations employ consistent initial data in general relativity with different
Numerical relativity simulations are essential to study the last stages of the binary neutron star coalescence. Unfortunately, for stable simulations there is the need to add an artificial low-density atmosphere. Here we discuss a new framework in wh