ﻻ يوجد ملخص باللغة العربية
We present a detailed analysis of the Galaxy structure using an unWISE wide-field image at $3.4mu$m. We perform a 3D photometric decomposition of the Milky Way taking into account i) the projection of the Galaxy on the celestial sphere and ii) that the observer is located within the Galaxy at the solar radius. We consider a large set of photometric models starting with a pure disc model and ending with a complex model which consists of thin and thick discs plus a boxy-peanut-shaped bulge. In our final model, we incorporate many observed features of the Milky Way, such as the disc flaring and warping, several over-densities in the plane, and the dust extinction. The model of the bulge with the corresponding X-shape structure is obtained from N-body simulations of a Milky Way-like galaxy. This allows us to retrieve the parameters of the aforementioned stellar components, estimate their contribution to the total Galaxy luminosity, and constrain the position angle of the bar. The mass of the thick disc in our models is estimated to be 0.4-1.3 of that for the thin disc. The results of our decomposition can be directly compared to those obtained for external galaxies via multicomponent photometric decomposition.
The dielectric function of interstellar dust material is modeled using observations of extinction and polarization in the infrared, together with estimates for the mass of interstellar dust. The astrodust material is assumed to be a mix of amorphous
We map the stellar structure of the Galactic thick disk and halo by applying color-magnitude diagram (CMD) fitting to photometric data from the SEGUE survey, allowing, for the first time, a comprehensive analysis of their structure at both high and l
The nature of the spiral structure of the Milky Way has long been debated. Only in the last decade have astronomers been able to accurately measure distances to a substantial number of high-mass star-forming regions, the classic tracers of spiral str
The spiral structure of our Milky Way Galaxy is not yet known. HII regions and giant molecular clouds are the most prominent spiral tracers. We collected the spiral tracer data of our Milky Way from the literature, namely, HII regions and giant molec
We consider the possible pattern of the overall spiral structure of the Galaxy, using data on the distribution of neutral (atomic), molecular, and ionized hydrogen, on the base of the hypothesis of the spiral structure being symmetric, i.e. the assum