ﻻ يوجد ملخص باللغة العربية
The increasingly diversified Quality-of-Service (QoS) requirements envisioned for future wireless networks call for more flexible and inclusive multiple access techniques for supporting emerging applications and communication scenarios. To achieve this, we propose a multi-dimensional multiple access (MDMA) protocol to meet individual User Equipments (UEs) unique QoS demands while utilizing multi-dimensional radio resources cost-effectively. In detail, the proposed scheme consists of two new aspects, i.e., selection of a tailored multiple access mode for each UE while considering the UE-specific radio resource utilization cost; and multi-dimensional radio resource allocation among coexisting UEs under dynamic network conditions. To reduce the UE-specific resource utilization cost, the base station (BS) organizes UEs with disparate multi-domain resource constraints as UE coalition by considering each UEs specific resource availability, perceived quality, and utilization capability. Each UE within a coalition could utilize its preferred radio resources, which leads to low utilization cost while avoiding resource-sharing conflicts with remaining UEs. Furthermore, to meet UE-specific QoS requirements and varying resource conditions at the UE side, the multi-dimensional radio resource allocation among coexisting UEs is formulated as an optimization problem to maximize the summation of cost-aware utility functions of all UEs. A solution to solve this NP-hard problem with low complexity is developed using the successive convex approximation and the Lagrange dual decomposition methods. The effectiveness of our proposed scheme is validated by numerical simulation and performance comparison with state-of-the-art schemes. In particular, the simulation results demonstrate that our proposed scheme outperforms these benchmark schemes by large margins.
In this paper, we study inter-operator spectrum sharing and intra-operator resource allocation in shared spectrum access communication systems and propose efficient dynamic solutions to address both inter-operator and intra-operator resource allocati
Rate-Splitting Multiple Access (RSMA) is a flexible and robust multiple access scheme for downlink multi-antenna wireless networks. RSMA relies on Rate-Splitting (RS) at the transmitter and Successive Interference Cancellation (SIC) at the receivers.
The mobile edge computing framework offers the opportunity to reduce the energy that devices must expend to complete computational tasks. The extent of that energy reduction depends on the nature of the tasks, and on the choice of the multiple access
Non-orthogonal multiple access (NOMA) is envisioned to be one of the most beneficial technologies for next generation wireless networks due to its enhanced performance compared to other conventional radio access techniques. Although the principle of
This paper investigates the capacity and capacity per unit cost of Gaussian multiple access-channel (GMAC) with peak power constraints. We first devise an approach based on Blahut-Arimoto Algorithm to numerically optimize the sum rate and quantify th