ﻻ يوجد ملخص باللغة العربية
Chameleon gravity is an example of a model that gives rise to interesting phenomenology on cosmological scales while simultaneously possessing a screening mechanism, allowing it to avoid solar system constraints. Such models result in non-linear field equations, which can be solved analytically only in simple highly symmetric systems. In this work we study the equation of motion of a scalar-tensor theory with chameleon screening using the finite element method. More specifically, we solve the field equation for spherical and triaxial NFW cluster-sized halos. This allows a detailed investigation of the relationship between the NFW concentration and the virial mass parameters and the magnitude of the chameleon acceleration, as measured at the virial radius. In addition, we investigate the effects on the chameleon acceleration due to halo triaxiality. We focus on the parameter space regions that are still allowed by the observational constraints. We find that given our dataset, the largest allowed value for the chameleon-to-NFW acceleration ratio at the virial radius is $sim 10^{-7}$. This result strongly indicates that the chameleon models that are still allowed by the observational constraints would not lead to any measurable effects on galaxy cluster scales. Nonetheless, we also find that there is a direct relationship between the NFW potential and the chameleon-to-NFW acceleration ratio at the virial radius. Similarly, there is a direct (yet a much more complicated) relationship between the NFW concentration, the virial mass and the acceleration ratios at the virial radius. Finally, we find that triaxiality introduces extra directional effects on the acceleration measurements. These effects in combination could potentially be used in future observational searches for fifth forces.
Chameleon scalar fields can screen their associated fifth forces from detection by changing their mass with the local density. These models are an archetypal example of a screening mechanism, and have become an important target for both cosmological
We consider cosmological models where dark energy is described by a dynamical field equipped with the Chameleon screening mechanism, which serves to hide its effects in local dense regions and to conform to Solar System observations. In these models,
We discuss the scalar mode of gravitational waves emerging in the context of $F(R)$ gravity by taking into account the chameleon mechanism. Assuming a toy model with a specific matter distribution to reproduce the environment of detection experiment
Unification of dark matter and dark energy as short- and long-range manifestations of a single cosmological substance is possible in models described by the generalized Chaplygin gas equation of state. We show it admits halo-like structures and discu
Bimetric gravity can reproduce the accelerated expansion of the Universe, without a cosmological constant. However, the stability of these solutions to linear perturbations has been questioned, suggesting exponential growth of structure in this appro