ﻻ يوجد ملخص باللغة العربية
Magneto-ionic control of magnetic properties through ionic migration has shown promise in enabling new functionalities in energy-efficient spintronic devices. In this work, we demonstrate the effect of helium ion irradiation and oxygen implantation on magneto-ionically induced exchange bias effect in Gd/Ni$_{0.33}$Co$_{0.67}$O heterostructures. Irradiation using $He^+$ leads to an expansion of the Ni$_{0.33}$Co$_{0.67}$O lattice due to strain relaxation. At low He+ fluence ($leq$ 2$times$10$^{14}$ ions cm$^{-2}$), the redox-induced interfacial magnetic moment initially increases, owing to enhanced oxygen migration. At higher fluence, the exchange bias is suppressed due to reduction of pinned uncompensated interfacial Ni$_{0.33}$Co$_{0.67}$O spins. For oxygen implanted samples, an initial lattice expansion below a dose of 5$times$10$^{15}$ cm$^{-2}$ is subsequently dominated at higher dose by a lattice contraction and phase segregation into NiO and CoO-rich phases, which in turn alters the exchange bias. These results highlight the possibility of ion irradiation and implantation as an effective means to tailor magneto-ionic effects.
X-ray photoelectron spectroscopy (XPS) and resonant x-ray emission spectroscopy (RXES) measurements of pellet and thin film forms of TiO$_2$ with implanted Fe ions are presented and discussed. The findings indicate that Fe-implantation in a TiO$_2$ p
Electrically induced ionic motion offers a new way to realize voltage-controlled magnetism, opening the door to a new generation of logic, sensor, and data storage technologies. Here, we demonstrate an effective approach to magneto-ionically and elec
Mastery of order-disorder processes in highly non-equilibrium nanostructured oxides has significant implications for the development of emerging energy technologies. However, we are presently limited in our ability to quantify and harness these proce
Focussed Ion Beam (FIB) milling is a mainstay of nano-scale machining. By manipulating a tightly focussed beam of energetic ions, often gallium (Ga+), FIB can sculpt nanostructures via localised sputtering. This ability to cut solid matter on the nan
The manipulation of the antiferromagnetic interlayer coupling in the epitaxial Fe/Cr/Fe(001) trilayer system by moderate 5 keV He ion beam irradiation has been investigated experimentally. It is shown that even for irradiation with very low fluences