ترغب بنشر مسار تعليمي؟ اضغط هنا

Ion irradiation and implantation modifications of magneto-ionically induced exchange bias in Gd/NiCoO

92   0   0.0 ( 0 )
 نشر من قبل Kai Liu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magneto-ionic control of magnetic properties through ionic migration has shown promise in enabling new functionalities in energy-efficient spintronic devices. In this work, we demonstrate the effect of helium ion irradiation and oxygen implantation on magneto-ionically induced exchange bias effect in Gd/Ni$_{0.33}$Co$_{0.67}$O heterostructures. Irradiation using $He^+$ leads to an expansion of the Ni$_{0.33}$Co$_{0.67}$O lattice due to strain relaxation. At low He+ fluence ($leq$ 2$times$10$^{14}$ ions cm$^{-2}$), the redox-induced interfacial magnetic moment initially increases, owing to enhanced oxygen migration. At higher fluence, the exchange bias is suppressed due to reduction of pinned uncompensated interfacial Ni$_{0.33}$Co$_{0.67}$O spins. For oxygen implanted samples, an initial lattice expansion below a dose of 5$times$10$^{15}$ cm$^{-2}$ is subsequently dominated at higher dose by a lattice contraction and phase segregation into NiO and CoO-rich phases, which in turn alters the exchange bias. These results highlight the possibility of ion irradiation and implantation as an effective means to tailor magneto-ionic effects.



قيم البحث

اقرأ أيضاً

X-ray photoelectron spectroscopy (XPS) and resonant x-ray emission spectroscopy (RXES) measurements of pellet and thin film forms of TiO$_2$ with implanted Fe ions are presented and discussed. The findings indicate that Fe-implantation in a TiO$_2$ p ellet sample induces heterovalent cation substitution (Fe$^{2+}rightarrow$ Ti$^{4+}$) beneath the surface region. But in thin film samples, the clustering of Fe atoms is primarily detected. In addition to this, significant amounts of secondary phases of Fe$^{3+}$ are detected on the surface of all doped samples due to oxygen exposure. These experimental findings are compared with density functional theory (DFT) calculations of formation energies for different configurations of structural defects in the implanted TiO$_2$:Fe system. According to our calculations, the clustering of Fe-atoms in TiO$_2$:Fe thin films can be attributed to the formation of combined substitutional and interstitial defects. Further, the differences due to Fe doping in pellet and thin film samples can ultimately be attributed to different surface to volume ratios.
Electrically induced ionic motion offers a new way to realize voltage-controlled magnetism, opening the door to a new generation of logic, sensor, and data storage technologies. Here, we demonstrate an effective approach to magneto-ionically and elec trically tune exchange bias in Gd/Ni$_{1-x}$Co$_{x}$O thin films (x=0.50, 0.67), where neither of the layers alone is ferromagnetic at room temperature. The Gd capping layer deposited onto antiferromagnetic Ni$_{1-x}$Co$_{x}$O initiates a solid-state redox reaction that reduces an interfacial region of the oxide to ferromagnetic NiCo. Exchange bias is established after field cooling, which can be enhanced by up to 35% after a voltage conditioning and subsequently reset with a second field cooling. These effects are caused by the presence of an interfacial ferromagnetic NiCo layer, which further alloys with the Gd layer upon field cooling and voltage application, as confirmed by electron microscopy and polarized neutron reflectometry studies. These results highlight the viability of the solid-state magneto-ionic approach to achieve electric control of exchange bias, with potentials for energy-efficient magneto-ionic devices.
Mastery of order-disorder processes in highly non-equilibrium nanostructured oxides has significant implications for the development of emerging energy technologies. However, we are presently limited in our ability to quantify and harness these proce sses at high spatial, chemical, and temporal resolution, particularly in extreme environments. Here we describe the percolation of disorder at the model oxide interface LaMnO$_3$ / SrTiO$_3$, which we visualize during in situ ion irradiation in the transmission electron microscope. We observe the formation of a network of disorder during the initial stages of ion irradiation and track the global progression of the system to full disorder. We couple these measurements with detailed structural and chemical probes, examining possible underlying defect mechanisms responsible for this unique percolative behavior.
Focussed Ion Beam (FIB) milling is a mainstay of nano-scale machining. By manipulating a tightly focussed beam of energetic ions, often gallium (Ga+), FIB can sculpt nanostructures via localised sputtering. This ability to cut solid matter on the nan o-scale has revolutionised sample preparation across the life-, earth- and materials sciences. For example FIB is central to microchip prototyping, 3D material analysis, targeted electron microscopy sample extraction and the nanotechnology behind size-dependent material properties. Despite its widespread usage, detailed understanding of the functional consequences of FIB-induced structural damage, intrinsic to the technique, remains elusive. Here, we present nano-scale measurements of three-dimensional, FIB-induced lattice strains, probed using Bragg Coherent X-ray Diffraction Imaging (BCDI). We observe that even low gallium ion doses, typical of FIB imaging, cause substantial lattice distortions. At higher doses, extended self-organised defect structures appear, giving rise to stresses far in excess of the bulk yield limit. Combined with detailed numerical calculations, these observations provide fundamental insight into the nature of the damage created and the structural instabilities that lead to a surprisingly inhomogeneous morphology.
The manipulation of the antiferromagnetic interlayer coupling in the epitaxial Fe/Cr/Fe(001) trilayer system by moderate 5 keV He ion beam irradiation has been investigated experimentally. It is shown that even for irradiation with very low fluences (10^14 ions/cm^2) a drastic change in strength of the coupling appears. For thin Cr-spacers (below 0.6 - 0.7 nm) the coupling strength decreases with fluence, becoming ferromagnetic for fluences above (2x10^14 ions/cm^2). The effect is connected with the creation of magnetic bridges in the layered system due to atomic exchange events caused by the bombardment. For thicker Cr spacers (0.8 - 1.2 nm) an enhancement of the antiferromagnetic coupling strength is found. A possible explanation of the enhancement effect is given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا