ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarity in the Classroom: A Case Study Leveraging Peer Sentiment Toward Scalable Assessment

93   0   0.0 ( 0 )
 نشر من قبل Zachariah Beasley
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Accurately grading open-ended assignments in large or massive open online courses (MOOCs) is non-trivial. Peer review is a promising solution but can be unreliable due to few reviewers and an unevaluated review form. To date, no work has 1) leveraged sentiment analysis in the peer-review process to inform or validate grades or 2) utilized aspect extraction to craft a review form from what students actually communicated. Our work utilizes, rather than discards, student data from review form comments to deliver better information to the instructor. In this work, we detail the process by which we create our domain-dependent lexicon and aspect-informed review form as well as our entire sentiment analysis algorithm which provides a fine-grained sentiment score from text alone. We end by analyzing validity and discussing conclusions from our corpus of over 6800 peer reviews from nine courses to understand the viability of sentiment in the classroom for increasing the information from and reliability of grading open-ended assignments in large courses.



قيم البحث

اقرأ أيضاً

We propose measurement integrity, a property related to ex post reward fairness, as a novel desideratum for peer prediction mechanisms in many applications, including peer assessment. We operationalize this notion to evaluate the measurement integrit y of different mechanisms in computational experiments. Our evaluations simulate the application of peer prediction mechanisms to peer assessment---a setting in which realistic models have been validated on real data and in which ex post fairness concerns are quite salient. We find that peer prediction mechanisms, as proposed in the literature, largely fail to demonstrate measurement integrity in our experiments. However, we also find that certain mechanisms can be supplemented with realistic parametric statistical models to improve their measurement integrity. In the same setting, we also evaluate an empirical notion of robustness against strategic behavior to complement the theoretical analyses of robustness against strategic behavior that have been the main focus of the peer prediction literature. In this dimension of analysis, we again find that supplementing certain mechanisms with parametric statistical models can improve their empirical performance. Even so, though, we find that theoretical guarantees of robustness against strategic behavior are somewhat noisy predictors of empirical robustness. As a whole, our empirical methodology for quantifying desirable mechanism properties facilitates a more nuanced comparison between mechanisms than theoretical analysis alone. Ultimately, we find there is a trade-off between our two dimensions of analysis. The best performing mechanisms for measurement integrity are highly susceptible to strategic behavior. On the other hand, certain parametric peer prediction mechanisms are robust against all the strategic manipulations we consider while still achieving reasonable measurement integrity.
An independent ethical assessment of an artificial intelligence system is an impartial examination of the systems development, deployment, and use in alignment with ethical values. System-level qualitative frameworks that describe high-level requirem ents and component-level quantitative metrics that measure individual ethical dimensions have been developed over the past few years. However, there exists a gap between the two, which hinders the execution of independent ethical assessments in practice. This study bridges this gap and designs a holistic independent ethical assessment process for a text classification model with a special focus on the task of hate speech detection. The assessment is further augmented with protected attributes mining and counterfactual-based analysis to enhance bias assessment. It covers assessments of technical performance, data bias, embedding bias, classification bias, and interpretability. The proposed process is demonstrated through an assessment of a deep hate speech detection model.
TalkMoves is an innovative application designed to support K-12 mathematics teachers to reflect on, and continuously improve their instructional practices. This application combines state-of-the-art natural language processing capabilities with autom ated speech recognition to automatically analyze classroom recordings and provide teachers with personalized feedback on their use of specific types of discourse aimed at broadening and deepening classroom conversations about mathematics. These specific discourse strategies are referred to as talk moves within the mathematics education community and prior research has documented the ways in which systematic use of these discourse strategies can positively impact student engagement and learning. In this article, we describe the TalkMoves applications cloud-based infrastructure for managing and processing classroom recordings, and its interface for providing teachers with feedback on their use of talk moves during individual teaching episodes. We present the series of model architectures we developed, and the studies we conducted, to develop our best-performing, transformer-based model (F1 = 79.3%). We also discuss several technical challenges that need to be addressed when working with real-world speech and language data from noisy K-12 classrooms.
In recent years, AI generated art has become very popular. From generating art works in the style of famous artists like Paul Cezanne and Claude Monet to simulating styles of art movements like Ukiyo-e, a variety of creative applications have been ex plored using AI. Looking from an art historical perspective, these applications raise some ethical questions. Can AI model artists styles without stereotyping them? Does AI do justice to the socio-cultural nuances of art movements? In this work, we take a first step towards analyzing these issues. Leveraging directed acyclic graphs to represent potential process of art creation, we propose a simple metric to quantify confounding bias due to the lack of modeling the influence of art movements in learning artists styles. As a case study, we consider the popular cycleGAN model and analyze confounding bias across various genres. The proposed metric is more effective than state-of-the-art outlier detection method in understanding the influence of art movements in artworks. We hope our work will elucidate important shortcomings of computationally modeling artists styles and trigger discussions related to accountability of AI generated art.
In an effort to overcome the data deluge in computational biology and bioinformatics and to facilitate bioinformatics research in the era of big data, we identify some of the most influential algorithms that have been widely used in the bioinformatic s community. These top data mining and machine learning algorithms cover classification, clustering, regression, graphical model-based learning, and dimensionality reduction. The goal of this study is to guide the focus of scalable computing experts in the endeavor of applying new storage and scalable computation designs to bioinformatics algorithms that merit their attention most, following the engineering maxim of optimize the common case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا