ﻻ يوجد ملخص باللغة العربية
The polarisation Sagnac speedmeter interferometer has the potential to replace the Michelson interferometer as the instrumental basis for future generations of ground-based gravitational wave detectors. The quantum noise benefit of this speedmeter is dependent on high-quality polarisation optics, the polarisation beam-splitter (PBS) and quarter-waveplate (QWP) optics that are key to this detector configuration and careful consideration of the effect of birefringence in the arm cavities of the interferometer. A PBS with an extinction ratio of better than 4000 in transmission and 700 in reflection for a $41^{circ}$ angle of incidence was characterised along with a QWP of birefringence of $frac{lambda}{4} + frac{lambda}{324}$. The cavity mirror optics of a 10m prototype polarisation Sagnac speedmeter were measured to have birefringence in the range $1times10^{-3}$ to $2times10^{-5}$ radians. This level of birefringence, along with the QWP imperfections, can be canceled out by careful adjustment of the QWP angle, to the extent that the extinction ratio of the PBS is the leading limitation for the polarisation Sagnac speedmeter in terms of polarisation effects.
Near-unstable cavities have been proposed as an enabling technology for future gravitational wave detectors, as their compact structure and large beam spots can reduce the coating thermal noise of the interferometer. We present a tabletop experiment
Detuning the signal-recycling cavity length from a cavity resonance significantly improves the quantum noise beyond the standard quantum limit, while there is no km-scale gravitational-wave detector successfully implemented the technique. The detunin
We consider enhancing the sensitivity of future gravitational-wave detectors by using double optical spring. When the power, detuning and bandwidth of the two carriers are chosen appropriately, the effect of the double optical spring can be described
The coating design for mirrors used in interferometric detectors of gravitational waves currently consists of stacks of two alternating dielectric materials with different refractive indexes. In order to explore the performance limits of such coating
We present the perspective of using atom interferometry for gravitational wave (GW) detection in the mHz to about 10 Hz frequency band. We focus on light-pulse atom interferometers which have been subject to intense developments in the last 25 years.