ﻻ يوجد ملخص باللغة العربية
We present a new scheme which numerically evaluates the real-time path integral for $phi^4$ real scalar field theory in a lattice version of the closed-time formalism. First step of the scheme is to rewrite the path integral in an explicitly convergent form by applying Cauchys integral theorem to each scalar field. In the step an integration path for the scalar field is deformed on a complex plane such that the $phi^4$ term becomes a damping factor in the path integral. Secondly the integrations of the complexified scalar fields are discretized by the Gauss-Hermite quadrature and then the path integral turns out to be a multiple sum. Finally in order to efficiently evaluate the summation we apply information compression technique using the singular value decomposition to the discretized path integral, then a tensor network representation for the path integral is obtained after integrating the discretized fields. As a demonstration, by using the resulting tensor network we numerically evaluate the time-correlator in 1+1 dimensional system. For confirmation, we compare our result with the exact one at small spatial volume. Furthermore, we show the correlator in relatively large volume using a coarse-graining scheme and verify that the result is stable against changes of a truncation order for the coarse-graining scheme.
We present a tensor network representation of the path integral for the one-component real scalar field theory in 1+1 dimensional Minkowski space-time. It is numerically verified by comparing with the exact result in the non-interacting case.
The Wilson action for Euclidean lattice gauge theory defines a positive-definite transfer matrix that corresponds to a unitary lattice gauge theory time-evolution operator if analytically continued to real time. Hoshina, Fujii, and Kikukawa (HFK) rec
We test an alternative proposal by Bruno and Hansen [1] to extract the scattering length from lattice simulations in a finite volume. For this, we use a scalar $phi^4$ theory with two mass nondegenerate particles and explore various strategies to imp
Direct numerical evaluation of the real-time path integral has a well-known sign problem that makes convergence exponentially slow. One promising remedy is to use Picard-Lefschetz theory to flow the domain of the field variables into the complex plan
We present an analysis about the influence of an external magnetic field on renormalons in a self interacting theory $lambda phi ^{4}$. In the weak magnetic field region, using an appropriate expansion for the Schwinger propagators, we find new renor