ﻻ يوجد ملخص باللغة العربية
Entity resolution is the task of identifying records in different datasets that refer to the same entity in the real world. In sensitive domains (e.g. financial accounts, hospital health records), entity resolution must meet privacy requirements to avoid revealing sensitive information such as personal identifiable information to untrusted parties. Existing solutions are either too algorithmically-specific or come with an implicit trade-off between accuracy of the computation, privacy, and run-time efficiency. We propose AMMPERE, an abstract computation model for performing universal privacy-preserving entity resolution. AMPPERE offers abstractions that encapsulate multiple algorithmic and platform-agnostic approaches using variants of Jaccard similarity to perform private data matching and entity resolution. Specifically, we show that two parties can perform entity resolution over their data, without leaking sensitive information. We rigorously compare and analyze the feasibility, performance overhead and privacy-preserving properties of these approaches on the Sharemind multi-party computation (MPC) platform as well as on PALISADE, a lattice-based homomorphic encryption library. The AMPPERE system demonstrates the efficacy of privacy-preserving entity resolution for real-world data while providing a precise characterization of the induced cost of preventing information leakage.
As machine learning becomes a practice and commodity, numerous cloud-based services and frameworks are provided to help customers develop and deploy machine learning applications. While it is prevalent to outsource model training and serving tasks in
We introduce CryptGPU, a system for privacy-preserving machine learning that implements all operations on the GPU (graphics processing unit). Just as GPUs played a pivotal role in the success of modern deep learning, they are also essential for reali
In this paper, we present a general multiparty modeling paradigm with Privacy Preserving Principal Component Analysis (PPPCA) for horizontally partitioned data. PPPCA can accomplish multiparty cooperative execution of PCA under the premise of keeping
Many reinforcement learning applications involve the use of data that is sensitive, such as medical records of patients or financial information. However, most current reinforcement learning methods can leak information contained within the (possibly
The Domain Name System (DNS) was created to resolve the IP addresses of the web servers to easily remembered names. When it was initially created, security was not a major concern; nowadays, this lack of inherent security and trust has exposed the gl